Chapter 35: design of experiment

experimental design = experiment design = design of experiments = DoE

9 p.72

question-design-analysis loop

35.2 terminology

  • population
    • sample
      • subsample
  • unit
    • experimental unit
      • response
      • block: group of similar experimental unit (10 p.74)
    • observational unit / measurement unit 9
  • replication (9 p.76): an independent observation of the treatment (10 p.74)
    • treatment replication: experimental-unit-to-experimental-unit variation
    • measurement replication = subsample: measurement-to-measurement variation
  • replicate
    • experimental replicate
    • biological replicate
    • technical replicate

10 p.73

\(Y_{\scriptscriptstyle{ij}}\): the response observed from the \(j\)th experimental unit assigned to the \(i\)th treatment

\(\mu_{\scriptscriptstyle{i}}\): the mean response to the \(i\)th treatment

\(\mathcal{E}_{\scriptscriptstyle{ij}}\): the noise from other possible natural variation or nonrandom and random error

\[ Y_{{\scriptscriptstyle i}{\scriptscriptstyle j}}=\mu_{{\scriptscriptstyle i}}+\mathcal{E}_{{\scriptscriptstyle i}{\scriptscriptstyle j}},\begin{cases} i\in\mathbb{N}\cap\left[1,n_{{\scriptscriptstyle i}}\right] & \mathbb{N}\ni n_{{\scriptscriptstyle i}}\text{ treatments}\\ j\in\mathbb{N}\cap\left[1,n_{{\scriptscriptstyle j}}\right] & \mathbb{N}\ni n_{{\scriptscriptstyle j}}\text{ experimental units per treatment} \end{cases} \]

Each treatment has \(n_{j}\) experimental units, so there are totally \(n_{i}n_{j}\) experimental units.

If experimental units cannot be homogeneous, we can try to

  • stratify them
  • group them, and measure group to group variation
  • block them

here \(n_{j}\) blocks each with \(n_{i}\) experimental units where each treatment occurs once in each block

\[ \begin{aligned} Y_{{\scriptscriptstyle i}{\scriptscriptstyle j}}= & \mu_{{\scriptscriptstyle i}}+\mathcal{E}_{{\scriptscriptstyle i}{\scriptscriptstyle j}}\\ = & \mu_{{\scriptscriptstyle i}}+b_{{\scriptscriptstyle j}}+\mathcal{E}_{{\scriptscriptstyle i}{\scriptscriptstyle j}}^{*},\begin{cases} i\in\mathbb{N}\cap\left[1,n_{{\scriptscriptstyle i}}\right] & \mathbb{N}\ni n_{{\scriptscriptstyle i}}\text{ experimental units per block}\\ j\in\mathbb{N}\cap\left[1,n_{{\scriptscriptstyle j}}\right] & \mathbb{N}\ni n_{{\scriptscriptstyle j}}\text{ blocks} \end{cases} \end{aligned} \]

where

\[ \mathcal{E}_{{\scriptscriptstyle i}{\scriptscriptstyle j}}=b_{{\scriptscriptstyle j}}+\mathcal{E}_{{\scriptscriptstyle i}{\scriptscriptstyle j}}^{*} \]

i.e. the variation between groups or blocks of experimental units has been identified and isolated from \(\mathcal{E}_{ij}^{*}\), which represents the variability of experimental units within a block. By isolating the block effect from the experimental units, the within-block variation can be used to compare treatment effects, which involves computing the estimated standard errors of contrasts of the treatments.

\[ \begin{aligned} Y_{{\scriptscriptstyle i}{\scriptscriptstyle j}}-Y_{{\scriptscriptstyle i^{\prime}}{\scriptscriptstyle j}}= & \left(\mu_{{\scriptscriptstyle i}}+b_{{\scriptscriptstyle j}}+\mathcal{E}_{{\scriptscriptstyle i}{\scriptscriptstyle j}}^{*}\right)\\ - & \left(\mu_{{\scriptscriptstyle i^{\prime}}}+b_{{\scriptscriptstyle j}}+\mathcal{E}_{{\scriptscriptstyle i^{\prime}}{\scriptscriptstyle j}}^{*}\right)\\ = & \left(\mu_{{\scriptscriptstyle i}}-\mu_{{\scriptscriptstyle i^{\prime}}}\right)+\left(\mathcal{E}_{{\scriptscriptstyle i}{\scriptscriptstyle j}}^{*}-\mathcal{E}_{{\scriptscriptstyle i^{\prime}}{\scriptscriptstyle j}}^{*}\right) \end{aligned} \]

which does not depend on the block effect \(b_{j}\) or free of block effects. The result of this difference is that the variance of the difference of two treatment responses within a block depends on the within-block variation among the experimental units and not the between-block variation.

35.2.1 replication vs. subsample

It is very important to distinguish between a subsample and a replication since the error variance estimated from between subsamples is in general considerably smaller than the error variance estimated from replications or between experimental units. (10 p.77)

https://www.researchgate.net/post/What-is-Experimental-Unit-Replicate-Total-sample-size-treatment-size

35.2.2 replication vs. repeated measurements

35.2.3 replication, replicate

35.2.3.1 technical replicate, biological replicate

https://www.youtube.com/watch?v=c_cpl5YsBV8

experimental, biological, technical replicates ( 11)

Fig. 24.1: experimental, biological, technical replicates ( 11)

35.2.4 Latin square design

LSD = Latin square design

6 p.505~507

https://tex.stackexchange.com/questions/501671/how-to-get-math-mode-curly-braces-in-tikz

\\usepackage{pgfplots} in engine.opts=list(extra.preamble=c("\\usepackage{pgfplots}"))

\usetikzlibrary{decorations}

Latin square example

Fig. 30.2: Latin square example

\[ Y_{{\scriptscriptstyle ijk}}=\mu+\alpha_{{\scriptscriptstyle i}}+\beta_{{\scriptscriptstyle j}}+\gamma_{{\scriptscriptstyle k}}+\mathcal{E}_{{\scriptscriptstyle ijk}},\begin{cases} i\in\mathbb{N}\cap\left[1,p\right] & \mathbb{N}\ni p\text{ treatments}\\ j\in\mathbb{N}\cap\left[1,p\right] & \mathbb{N}\ni p\text{ rows}\\ k\in\mathbb{N}\cap\left[1,p\right] & \mathbb{N}\ni p\text{ columns} \end{cases} \]

\[ \mathcal{E}_{{\scriptscriptstyle ijk}}\overset{\text{i.i.d.}}{\sim}\mathrm{n}\left(0,\sigma^{2}\right) \]


\(\rho_{{\scriptscriptstyle i}}\): \(i\)th row

\(\kappa_{{\scriptscriptstyle j}}\): \(j\)th column

\(\tau_{{\scriptscriptstyle k}}\): \(k\)th treatment

\[ \begin{aligned} Y_{{\scriptscriptstyle ijk}}= & \mu+\alpha_{{\scriptscriptstyle i}}+\beta_{{\scriptscriptstyle j}}+\gamma_{{\scriptscriptstyle k}}+\mathcal{E}_{{\scriptscriptstyle ijk}},\begin{cases} i\in\mathbb{N}\cap\left[1,p\right] & \mathbb{N}\ni p\text{ treatments}\\ j\in\mathbb{N}\cap\left[1,p\right] & \mathbb{N}\ni p\text{ rows}\\ k\in\mathbb{N}\cap\left[1,p\right] & \mathbb{N}\ni p\text{ columns} \end{cases}\\ = & \mu+\rho_{{\scriptscriptstyle i}}+\kappa_{{\scriptscriptstyle j}}+\tau_{{\scriptscriptstyle k}}+\mathcal{E}_{{\scriptscriptstyle ijk}},\begin{cases} i\in\mathbb{N}\cap\left[1,p\right] & \mathbb{N}\ni p\text{ rows}\\ j\in\mathbb{N}\cap\left[1,p\right] & \mathbb{N}\ni p\text{ columns}\\ k\in\mathbb{N}\cap\left[1,p\right] & \mathbb{N}\ni p\text{ treatments} \end{cases} \end{aligned} \]

35.2.5 model assumption and experimental unit, measurement/observational unit

model assumption and experimental unit 1 ( 12 fig.1)

Fig. 17.1: model assumption and experimental unit 1 ( 12 fig.1)

model assumption and experimental unit 2 ( 12 fig.2)

Fig. 17.2: model assumption and experimental unit 2 ( 12 fig.2)

model assumption and experimental unit 3 ( 12 fig.3)

Fig. 24.2: model assumption and experimental unit 3 ( 12 fig.3)

model assumption and experimental unit 4 ( 12 fig.4)

Fig. 16.1: model assumption and experimental unit 4 ( 12 fig.4)


\[ Y_{{\scriptscriptstyle ijk}}=\mu+\tau_{{\scriptscriptstyle i}}+\beta_{{\scriptscriptstyle j}}+\epsilon_{{\scriptscriptstyle ij}}+\varDelta_{{\scriptscriptstyle ijk}} \]

35.3 experiment structure

35.3.1 treatment structure

10 p.77

  • 1-way treatment structure
  • 2-way treatment structure
  • factorial arrangement treatment structure
  • fractional factorial arrangement treatment structure
  • factorial arrangement with one or more controls

35.3.2 design structure

10 p.77

  • CRD = completely randomized design
  • RCBD = randomized complete block design
    • ? why not called CRBD = completely randomized block design
  • LSD = Latin square design[35.2.4]
  • IBD = incomplete block design
    • BIBD = balanced IBD
  • various combinations and generalizations

35.3.3 size of experimental unit

  • split-plot design
    • split-split-plot design
    • split-split-split-plot design
  • repeated measures design
    • cross-over design
    • change-over design
  • nested design = hierarchical design
  • variations and combinations
    • SSEU = several sizes of experimental units

35.4 approach to experimentation

9 p.75

  • approach to experimentation
    • best-guess approach
    • one-factor-at-a-time approach = OFAT
    • factorial approach

35.5 sample size estimation

35.6 statistical analysis plan

35.7 protocol

9 p.95

35.8 DoE course with six sigma and Mintab

https://zhuanlan.zhihu.com/p/265914617

https://www.zhihu.com/question/416312693/answer/1426399810

35.8.1 evolution

  • Fisher
  • Rao

references

6.
張翔. & 廖崇智. 提綱挈領學統計. (大碩教育, 2021).
9.
Hu, F.-C. Statistical Design and Analysis of Biomedical Research. (International-Harvard (I-H) Statistical Consulting Company, Taipei, Taiwan, 2022).
10.
Milliken, G. A. & Johnson, D. E. Analysis of Messy Data Volume 1: Designed Experiments, Second Edition. (Chapman; Hall/CRC, Boca Raton, Fla., 2004).
11.
Buchanan, C. D. et al. Sorghum bicolors Transcriptome Response to Dehydration, High Salinity and ABA. Plant Molecular Biology 58, 699–720 (2005).
12.
Casler, M. D., Vermerris, W. & Dixon, R. A. Replication Concepts for Bioenergy Research Experiments. BioEnergy Research 8, 1–16 (2015).