Chapter 55: linear algebra
55.1 The Art of Linear Algeba
https://github.com/kenjihiranabe/The-Art-of-Linear-Algebra
https://stackoverflow.com/a/39177166
55.2 CCJou
https://www.youtube.com/playlist?list=PLP-JUp2VR1LsFtHT-i_vZ3oNFIAc3t_Ju
55.2.1 coordinate
https://www.youtube.com/watch?v=eMUFexQsKXA&list=PLP-JUp2VR1LsFtHT-i_vZ3oNFIAc3t_Ju&index=20
v=v1v1+v2v2+⋯+vnvn=v1v1+⋯+vnvn=c1β1+⋯+cnβn=c1β1+⋯+cnβn=Bc=B[v]B=e1ˆβ1+⋯+enˆβn=e1ˆβ1+⋯+enˆβn=e1ˆe1+⋯+enˆen=e1ˆe1+⋯+enˆene.g.=e1(1⋮0⋮0)n×1+⋯+en(0⋮0⋮1)n×1=e1(1⋮0⋮0)+⋯+en(0⋮0⋮1)=(1⋯0⋯0⋮⋱⋮⋱⋮0⋯1⋯0⋮⋱⋮⋱⋮0⋯0⋯1)n×n(e1⋮ej⋮en)n×1=In×ne=Ie
Bc=c1(|β1|)+⋯+cj(|βj|)+⋯+cn(|βn|)=(|||β1⋯βj⋯βn|||)(c1⋮cj⋮cn)=c1[|β1|]+⋯+cj[|βj|]+⋯+cn[|βn|]=[|||β1⋯βj⋯βn|||][c1⋮cj⋮cn]=c1β1+c2β2+⋯+cnβn=c1(|β1|)+c2(|β2|)+⋯+cn(|βn|)=(|||β1β2⋯βn|||)(c1c2⋮cn)=c1β1+c2β2+⋯+cnβn=c1[|β1|]+c2[|β2|]+⋯+cn[|βn|]=[|||β1β2⋯βn|||][c1c2⋮cn]=c1β1+⋯+cnβn=c1(|β1|)+⋯+cn(|βn|)=(||β1⋯βn||)(c1⋮cn)=B[v]B=c1β1+⋯+cnβn=c1[|β1|]+⋯+cn[|βn|]=[||β1⋯βn||][c1⋮cn]=[||β1⋯βn||][v1⋮vn]B=(|||β1⋯βj⋯βn|||)=[|||β1⋯βj⋯βn|||]=[|||β1β2⋯βn|||]=[||β1⋯βn||][v]B=c=[c1⋮cn]=[v1⋮vn]∈Fn=Fn∈{Rn,Cn,⋯}
v=B[v]B
v=B[v]BB−1v=B−1B[v]B=I[v]B=[v]B[v]B=B−1v
[v]B=B−1v
[v]B=B−1v∈∈Fn∈{Rn,Cn,⋯}
v=B[v]B=B′[v]B′
B[v]B=B′[v]B′[v]B=I[v]B=B−1B[v]B=B−1B′[v]B′[v]B=B−1B′[v]B′B′[v]B′=B[v]B[v]B′=I[v]B′=B′−1B′[v]B′=B′−1B[v]B[v]B′=B′−1B[v]B
55.2.2 linear transformation
v=v1v1+⋯+vnvn=vjvj=n∑j=1vjvj=v1[|v1|]+⋯+vn[|vn|]=[||v1⋯vn||][v1⋮vn]=V[v]V,{V=[||v1⋯vn||],V={vj}nj=1={v1,⋯,vn}[v]V=[v1⋮vn]∈Fn∈{Rn,Cn,⋯}if V invertible⟹[v]V=V−1v
∖mathfrakV=V vs.∖mathfrakB=B
v∈VT→W∋w=T(v),T:V→W{T(u+v)=T(u)+T(v)(a)additivityT(λv)=λT(v)(h)homogeneity
w=T(v)=T(v1v1+⋯+vnvn)(a)=T(v1v1)+⋯+T(vnvn)(h)=v1T(v1)+⋯+vnT(vn)=v1[|T(v1)|]+⋯+vn[|T(vn)|]=[||T(v1)⋯T(vn)||][v1⋮vn]=[||T(v1)⋯T(vn)||][v]V
w=T(v)=[||T(v1)⋯T(vn)||][v]V=T(V)[v]V,T(V)=[||T(v1)⋯T(vn)||]
w=T(v)v=V[v]V=T(V[v]V)T linear=T(V)[v]V
T(v)=w=w1w1+⋯+wmwm=wjwj=n∑j=1wjwj=w1[|w1|]+⋯+wm[|wm|]=[||w1⋯wm||][w1⋮wm]=W[w]Ww=T(v)=W[T(v)]W,{W=[||w1⋯wm||],W={wj}mj=1={w1,⋯,wm}[w]W=[w1⋮wm]∈Fm∈{Rm,Cm,⋯}if W invertible⟹[w]W=W−1w
∖mathfrakW=W vs.∖mathfrakV=V
T(v1)=t11w1+⋯+tm1wm=t11[|w1|]+⋯+tm1[|wm|]=[||w1⋯wm||][t11⋮tm1]=[||w1⋯wm||][|[T(v1)]W|]=W[T(v1)]W⋮T(vn)=t1nw1+⋯+tmnwm=t1n[|w1|]+⋯+tmn[|wm|]=[||w1⋯wm||][t1n⋮tmn]=[||w1⋯wm||][|[T(vn)]W|]=W[T(vn)]W
T(V)=[||T(v1)⋯T(vn)||]=[||w1⋯wm||][[t11⋮tm1]⋯[t1n⋮tmn]]=[||w1⋯wm||][t11⋯t1n⋮⋱⋮tm1⋯tmn]=[||w1⋯wm||][||[T(v1)]W⋯[T(vn)]W||]=WT,{W=[||w1⋯wm||]T=[t11⋯t1n⋮⋱⋮tm1⋯tmn]=[||[T(v1)]W⋯[T(vn)]W||]
T(V)=[||T(v1)⋯T(vn)||]=WT,{W=[||w1⋯wm||]T=[t11⋯t1n⋮⋱⋮tm1⋯tmn]=[||[T(v1)]W⋯[T(vn)]W||]
T=[||[T(v1)]W⋯[T(vn)]W||]V=[||v1⋯vn||]=[T(V)]W
T=[T(V)]W=W−1T(V)=[||w1⋯wm||]−1T(V),if W invertible=[||w1⋯wm||]−1T([||v1⋯vn||])=[||w1⋯wm||]−1[||T(v1)⋯T(vn)||]=W−1[||T(v1)⋯T(vn)||]=[||W−1T(v1)⋯W−1T(vn)||]=[||[T(v1)]W⋯[T(vn)]W||]
T=[T(V)]W=[||w1⋯wm||]−1[||T(v1)⋯T(vn)||]=W−1T(V)
T=[t11⋯t1n⋮⋱⋮tm1⋯tmn]=[||[T(v1)]W⋯[T(vn)]W||]=[T(V)]W=[||t1⋯tn||]=[||[T(v1)]W⋯[T(vn)]W||],tj=[T(vj)]W
W[w]W=w=T(v)=T(V)[v]VT(V)=WT=WT[v]V=W(T[v]V)W[w]W=W(T[v]V)[w]W=I[w]W=W−1W[w]W=W−1W(T[v]V)=IT[v]V=T[v]V,if W invertible[w]W=T[v]V[T(v)]Ww=T(v)=[w]W=T[v]V[T(v)]W=T[v]VT=[T(V)]W=[T(V)]W[v]V
[w]W=T[v]V=[T(v)]W=[T(V)]W[v]V
T=[||t1⋯tn||]=[[t11⋮tm1]⋯[t1n⋮tmn]]=[t11⋯t1n⋮⋱⋮tm1⋯tmn],[w]W=T[v]V⇕wi=tijvj=tijvj=[[t11⋮tm1]⋯[t1n⋮tmn]]=[t11⋯t1n⋮⋱⋮tm1⋯tmn]=[tij]m×n=[tij]=tij=[[t11⋮tm1]⋯[t1n⋮tmn]]=[t11⋯t1n⋮⋱⋮tm1⋯tmn]=[tij]m×n=[tij]=tij
T=[||t1⋯tn||]=[t11⋯t1n⋮⋱⋮tm1⋯tmn]=[tij]m×n=tij
T(v1)=t11w1+⋯+t1mwm=t11[|w1|]+⋯+t1m[|wm|]=[||w1⋯wm||][t11⋮t1m]=W[T(v1)]W⋮T(vn)=tn1w1+⋯+tnmwm=tn1[|w1|]+⋯+tnm[|wm|]=[||w1⋯wm||][tn1⋮tnm]=W[T(vn)]W⇓[||T(v1)⋯T(vn)||]=t11⋮tn1[|w1|]++⋯↷
\begin{aligned} WT= & T\left(V\right)\\ \Downarrow\\ T= & W^{{\scriptscriptstyle -1}}T\left(V\right) \end{aligned}
T=\begin{bmatrix}t_{{\scriptscriptstyle 1}}{}^{{\scriptscriptstyle 1}} & \cdots & t_{{\scriptscriptstyle n}}{}^{{\scriptscriptstyle 1}}\\ \vdots & \ddots & \vdots\\ t_{{\scriptscriptstyle 1}}{}^{{\scriptscriptstyle m}} & \cdots & t_{{\scriptscriptstyle n}}{}^{{\scriptscriptstyle m}} \end{bmatrix}=\begin{bmatrix}t_{{\scriptscriptstyle 1}}^{{\scriptscriptstyle 1}} & \cdots & t_{{\scriptscriptstyle n}}^{{\scriptscriptstyle 1}}\\ \vdots & \ddots & \vdots\\ t_{{\scriptscriptstyle 1}}^{{\scriptscriptstyle m}} & \cdots & t_{{\scriptscriptstyle n}}^{{\scriptscriptstyle m}} \end{bmatrix}=\begin{bmatrix}| & & |\\ \boldsymbol{t}_{{\scriptscriptstyle 1}} & \cdots & \boldsymbol{t}_{{\scriptscriptstyle n}}\\ | & & | \end{bmatrix}=\left[t_{{\scriptscriptstyle j}}^{{\scriptscriptstyle i}}\right]_{{\scriptscriptstyle m\times n}}=\left[t_{{\scriptscriptstyle j}}{}^{{\scriptscriptstyle i}}\right]_{{\scriptscriptstyle m\times n}}=t_{{\scriptscriptstyle j}}{}^{{\scriptscriptstyle i}}
\left[t_{{\scriptscriptstyle j}}{}^{{\scriptscriptstyle i}}\right]_{{\scriptscriptstyle m\times n}}=\left[t_{{\scriptscriptstyle j}}^{{\scriptscriptstyle i}}\right]_{{\scriptscriptstyle m\times n}}=\left[t^{{\scriptscriptstyle i}}{}_{{\scriptscriptstyle j}}\right]_{{\scriptscriptstyle m\times n}},\begin{cases} w^{{\scriptscriptstyle i}}=t_{{\scriptscriptstyle j}}^{{\scriptscriptstyle i}}v^{{\scriptscriptstyle j}}=t^{{\scriptscriptstyle i}}{}_{{\scriptscriptstyle j}}v^{{\scriptscriptstyle j}}\\ T\left(\boldsymbol{v}_{{\scriptscriptstyle j}}\right)=t_{{\scriptscriptstyle j}}^{{\scriptscriptstyle i}}\boldsymbol{w}_{{\scriptscriptstyle i}}=t_{{\scriptscriptstyle j}}{}^{{\scriptscriptstyle i}}\boldsymbol{w}_{{\scriptscriptstyle i}} \end{cases}
T=\left[t^{{\scriptscriptstyle i}}{}_{{\scriptscriptstyle j}}\right]_{{\scriptscriptstyle m\times n}}=t^{{\scriptscriptstyle i}}{}_{{\scriptscriptstyle j}}\text{ is the matrix representation of the linear transformation }T\left(\cdot\right):\mathcal{V}\rightarrow\mathcal{W}

Fig. 24.1: coordinate under linear transformation
55.2.3 change of basis
https://www.youtube.com/watch?v=WAtLPk55ljM&list=PLP-JUp2VR1LsFtHT-i_vZ3oNFIAc3t_Ju&index=22
\boldsymbol{v}=B\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B}}=B^{\prime}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B^{\prime}}}
\begin{aligned} B\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B}}= & B^{\prime}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B^{\prime}}}\\ \left[\boldsymbol{v}\right]_{{\scriptscriptstyle B}}=I\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B}}=B^{-1}B\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B}}= & B^{-1}B^{\prime}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B^{\prime}}}\\ \left[\boldsymbol{v}\right]_{{\scriptscriptstyle B}}= & B^{-1}B^{\prime}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B^{\prime}}}\\ B^{\prime}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B^{\prime}}}= & B\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B}}\\ \left[\boldsymbol{v}\right]_{{\scriptscriptstyle B^{\prime}}}=I\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B^{\prime}}}=B^{\prime-1}B^{\prime}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B^{\prime}}}= & B^{\prime-1}B\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B}}\\ \left[\boldsymbol{v}\right]_{{\scriptscriptstyle B^{\prime}}}= & B^{\prime-1}B\left[\boldsymbol{v}\right]_{{\scriptscriptstyle B}} \end{aligned}
\begin{aligned} \boldsymbol{v}= & v^{{\scriptscriptstyle 1}}\boldsymbol{v}_{{\scriptscriptstyle 1}}+\cdots+v^{{\scriptscriptstyle n}}\boldsymbol{v}_{{\scriptscriptstyle n}}=v^{{\scriptscriptstyle j}}\boldsymbol{v}_{{\scriptscriptstyle j}}=\sum_{j=1}^{n}v^{{\scriptscriptstyle j}}\boldsymbol{v}_{{\scriptscriptstyle j}}=v^{{\scriptscriptstyle 1}}\begin{bmatrix}|\\ \boldsymbol{v}_{{\scriptscriptstyle 1}}\\ | \end{bmatrix}+\cdots+v^{{\scriptscriptstyle n}}\begin{bmatrix}|\\ \boldsymbol{v}_{{\scriptscriptstyle n}}\\ | \end{bmatrix}=\begin{bmatrix}| & & |\\ \boldsymbol{v}_{{\scriptscriptstyle 1}} & \cdots & \boldsymbol{v}_{{\scriptscriptstyle n}}\\ | & & | \end{bmatrix}\begin{bmatrix}v^{{\scriptscriptstyle 1}}\\ \vdots\\ v^{{\scriptscriptstyle n}} \end{bmatrix}=V\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\\ = & v^{\prime{\scriptscriptstyle 1}}\boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime}+\cdots+v^{\prime{\scriptscriptstyle n}}\boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}=v^{\prime{\scriptscriptstyle j}}\boldsymbol{v}_{{\scriptscriptstyle j}}^{\prime}=\sum_{j=1}^{n}v^{\prime{\scriptscriptstyle j}}\boldsymbol{v}_{{\scriptscriptstyle j}}^{\prime}=v^{\prime{\scriptscriptstyle 1}}\begin{bmatrix}|\\ \boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime}\\ | \end{bmatrix}+\cdots+v^{\prime{\scriptscriptstyle n}}\begin{bmatrix}|\\ \boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}\\ | \end{bmatrix}=\begin{bmatrix}| & & |\\ \boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime} & \cdots & \boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}\\ | & & | \end{bmatrix}\begin{bmatrix}v^{\prime{\scriptscriptstyle 1}}\\ \vdots\\ v^{\prime{\scriptscriptstyle n}} \end{bmatrix}=V^{\prime}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}\\ \boldsymbol{v}= & V\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}=V^{\prime}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}} \end{aligned}
\begin{aligned} \boldsymbol{w}= & w^{{\scriptscriptstyle 1}}\boldsymbol{w}_{{\scriptscriptstyle 1}}+\cdots+w^{{\scriptscriptstyle m}}\boldsymbol{w}_{{\scriptscriptstyle m}}=w^{{\scriptscriptstyle j}}\boldsymbol{w}_{{\scriptscriptstyle j}}=\sum_{j=1}^{m}w^{{\scriptscriptstyle j}}\boldsymbol{w}_{{\scriptscriptstyle j}}=w^{{\scriptscriptstyle 1}}\begin{bmatrix}|\\ \boldsymbol{w}_{{\scriptscriptstyle 1}}\\ | \end{bmatrix}+\cdots+w^{{\scriptscriptstyle m}}\begin{bmatrix}|\\ \boldsymbol{w}_{{\scriptscriptstyle m}}\\ | \end{bmatrix}=\begin{bmatrix}| & & |\\ \boldsymbol{w}_{{\scriptscriptstyle 1}} & \cdots & \boldsymbol{w}_{{\scriptscriptstyle m}}\\ | & & | \end{bmatrix}\begin{bmatrix}w^{{\scriptscriptstyle 1}}\\ \vdots\\ w^{{\scriptscriptstyle m}} \end{bmatrix}=W\left[\boldsymbol{w}\right]_{{\scriptscriptstyle W}}\\ = & w^{\prime{\scriptscriptstyle 1}}\boldsymbol{w}_{{\scriptscriptstyle 1}}^{\prime}+\cdots+w^{\prime{\scriptscriptstyle m}}\boldsymbol{w}_{{\scriptscriptstyle m}}^{\prime}=w^{\prime{\scriptscriptstyle j}}\boldsymbol{w}_{{\scriptscriptstyle j}}^{\prime}=\sum_{j=1}^{m}w^{\prime{\scriptscriptstyle j}}\boldsymbol{w}_{{\scriptscriptstyle j}}^{\prime}=w^{\prime{\scriptscriptstyle 1}}\begin{bmatrix}|\\ \boldsymbol{w}_{{\scriptscriptstyle 1}}^{\prime}\\ | \end{bmatrix}+\cdots+w^{\prime{\scriptscriptstyle m}}\begin{bmatrix}|\\ \boldsymbol{w}_{{\scriptscriptstyle m}}^{\prime}\\ | \end{bmatrix}=\begin{bmatrix}| & & |\\ \boldsymbol{w}_{{\scriptscriptstyle 1}}^{\prime} & \cdots & \boldsymbol{w}_{{\scriptscriptstyle m}}^{\prime}\\ | & & | \end{bmatrix}\begin{bmatrix}w^{\prime{\scriptscriptstyle 1}}\\ \vdots\\ w^{\prime{\scriptscriptstyle m}} \end{bmatrix}=W^{\prime}\left[\boldsymbol{w}\right]_{{\scriptscriptstyle W^{\prime}}}\\ \boldsymbol{w}= & W\left[\boldsymbol{w}\right]_{{\scriptscriptstyle W}}=W^{\prime}\left[\boldsymbol{w}\right]_{{\scriptscriptstyle W^{\prime}}} \end{aligned}
\begin{aligned} \boldsymbol{v}_{{\scriptscriptstyle 1}}= & v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle 1}}\boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime}+\cdots+v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle n}}\boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}=v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle 1}}\begin{bmatrix}|\\ \boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime}\\ | \end{bmatrix}+\cdots+v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle n}}\begin{bmatrix}|\\ \boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}\\ | \end{bmatrix}=\begin{bmatrix}| & & |\\ \boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime} & \cdots & \boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}\\ | & & | \end{bmatrix}\begin{bmatrix}v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle 1}}\\ \vdots\\ v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle n}} \end{bmatrix}=V^{\prime}\left[\boldsymbol{v}_{{\scriptscriptstyle 1}}\right]_{{\scriptscriptstyle V^{\prime}}}\\ \vdots\\ \boldsymbol{v}_{{\scriptscriptstyle n}}= & v_{{\scriptscriptstyle n}}^{\prime}{}^{{\scriptscriptstyle 1}}\boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime}+\cdots+v_{{\scriptscriptstyle n}}^{\prime}{}^{{\scriptscriptstyle n}}\boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}=v_{{\scriptscriptstyle n}}^{\prime}{}^{{\scriptscriptstyle 1}}\begin{bmatrix}|\\ \boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime}\\ | \end{bmatrix}+\cdots+v_{{\scriptscriptstyle n}}^{\prime}{}^{{\scriptscriptstyle n}}\begin{bmatrix}|\\ \boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}\\ | \end{bmatrix}=\begin{bmatrix}| & & |\\ \boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime} & \cdots & \boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}\\ | & & | \end{bmatrix}\begin{bmatrix}v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle n}}\\ \vdots\\ v_{{\scriptscriptstyle n}}^{\prime}{}^{{\scriptscriptstyle n}} \end{bmatrix}=V^{\prime}\left[\boldsymbol{v}_{{\scriptscriptstyle n}}\right]_{{\scriptscriptstyle V^{\prime}}}\\ \Downarrow\\ \begin{bmatrix}| & & |\\ \boldsymbol{v}_{{\scriptscriptstyle 1}} & \cdots & \boldsymbol{v}_{{\scriptscriptstyle n}}\\ | & & | \end{bmatrix}= & \begin{array}{c} v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle 1}}\\ \vdots\\ v_{{\scriptscriptstyle n}}^{\prime}{}^{{\scriptscriptstyle 1}} \end{array}\begin{bmatrix}|\\ \boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime}\\ | \end{bmatrix}\begin{array}{c} +\\ \\ + \end{array}\begin{array}{c} \cdots\\ \curvearrowright\\ \cdots \end{array}\begin{array}{c} +\\ \\ + \end{array}\begin{array}{c} v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle n}}\\ \vdots\\ v_{{\scriptscriptstyle n}}^{\prime}{}^{{\scriptscriptstyle n}} \end{array}\begin{bmatrix}|\\ \boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}\\ | \end{bmatrix}\\ = & \begin{bmatrix}| & & |\\ \boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime} & \cdots & \boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}\\ | & & | \end{bmatrix}\begin{bmatrix}v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle 1}} & \cdots & v_{{\scriptscriptstyle n}}^{\prime}{}^{{\scriptscriptstyle 1}}\\ \vdots & \ddots & \vdots\\ v_{{\scriptscriptstyle 1}}^{\prime}{}^{{\scriptscriptstyle n}} & \cdots & v_{{\scriptscriptstyle n}}^{\prime}{}^{{\scriptscriptstyle n}} \end{bmatrix}=\begin{bmatrix}| & & |\\ \boldsymbol{v}_{{\scriptscriptstyle 1}}^{\prime} & \cdots & \boldsymbol{v}_{{\scriptscriptstyle n}}^{\prime}\\ | & & | \end{bmatrix}\begin{bmatrix}| & & |\\ \left[\boldsymbol{v}_{{\scriptscriptstyle 1}}\right]_{{\scriptscriptstyle V^{\prime}}} & \cdots & \left[\boldsymbol{v}_{{\scriptscriptstyle n}}\right]_{{\scriptscriptstyle V^{\prime}}}\\ | & & | \end{bmatrix}=V^{\prime}\left[V\right]_{{\scriptscriptstyle V^{\prime}}}\\ V= & V^{\prime}\left[V\right]_{{\scriptscriptstyle V^{\prime}}}\overset{\text{if }V^{\prime}\text{ invertible}}{\Longleftrightarrow}\left[V\right]_{{\scriptscriptstyle V^{\prime}}}=V^{\prime{\scriptscriptstyle -1}}V \end{aligned}
\left[V\right]_{{\scriptscriptstyle V^{\prime}}}=V^{\prime{\scriptscriptstyle -1}}V:\left[V^{\prime}\middle|V\right]\overset{\text{Gauss-Jordan delimination}}{\longrightarrow}\left[I\middle|V^{\prime{\scriptscriptstyle -1}}V\right]=\left[I\middle|\left[V\right]_{{\scriptscriptstyle V^{\prime}}}\right]
\left[V^{\prime}\right]_{{\scriptscriptstyle V}}=V^{{\scriptscriptstyle -1}}V^{\prime}:\left[V\middle|V^{\prime}\right]\overset{\text{Gauss-Jordan delimination}}{\longrightarrow}\left[I\middle|V^{{\scriptscriptstyle -1}}V^{\prime}\right]=\left[I\middle|\left[V^{\prime}\right]_{{\scriptscriptstyle V}}\right]
\begin{cases} \left[V\right]_{{\scriptscriptstyle V^{\prime}}}=V^{\prime{\scriptscriptstyle -1}}V: & \left[V^{\prime}\middle|V\right]\overset{\text{Gauss-Jordan delimination}}{\longrightarrow}\left[I\middle|V^{\prime{\scriptscriptstyle -1}}V\right]=\left[I\middle|\left[V\right]_{{\scriptscriptstyle V^{\prime}}}\right]\\ \left[V^{\prime}\right]_{{\scriptscriptstyle V}}=V^{{\scriptscriptstyle -1}}V^{\prime}: & \left[V\middle|V^{\prime}\right]\overset{\text{Gauss-Jordan delimination}}{\longrightarrow}\left[I\middle|V^{{\scriptscriptstyle -1}}V^{\prime}\right]=\left[I\middle|\left[V^{\prime}\right]_{{\scriptscriptstyle V}}\right] \end{cases}
\begin{aligned} \boldsymbol{v}= & V\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}=V^{\prime}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}\\ = & V\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}},\wedge V=V^{\prime}\left[V\right]_{{\scriptscriptstyle V^{\prime}}}\\ = & V^{\prime}\left[V\right]_{{\scriptscriptstyle V^{\prime}}}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\\ V^{\prime}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}= & V^{\prime}\left[V\right]_{{\scriptscriptstyle V^{\prime}}}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\\ \left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}= & \left[V\right]_{{\scriptscriptstyle V^{\prime}}}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}} \end{aligned}
\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}=\left[V\right]_{{\scriptscriptstyle V^{\prime}}}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}
symmetrically,
\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}=\left[V^{\prime}\right]_{{\scriptscriptstyle V}}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}

Fig. 30.2: change of coordinate basis under linear transformation
\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\rightleftharpoons\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}
\begin{aligned} \left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\overset{\left[V\right]_{{\scriptscriptstyle V^{\prime}}}}{\rightarrow}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}= & \left[V\right]_{{\scriptscriptstyle V^{\prime}}}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\\ \left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\overset{\left[V^{\prime}\right]_{{\scriptscriptstyle V}}}{\leftarrow}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}= & \left[V^{\prime}\right]_{{\scriptscriptstyle V}}^{{\scriptscriptstyle -1}}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\\ \Downarrow\\ \left[V\right]_{{\scriptscriptstyle V^{\prime}}}= & \left[V^{\prime}\right]_{{\scriptscriptstyle V}}^{{\scriptscriptstyle -1}}\Leftrightarrow\left[V^{\prime}\right]_{{\scriptscriptstyle V}}=\left[V\right]_{{\scriptscriptstyle V^{\prime}}}^{{\scriptscriptstyle -1}} \end{aligned}
\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\rightarrow\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}
\begin{aligned} \left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\overset{\left[V\right]_{{\scriptscriptstyle V^{\prime}}}}{\rightarrow}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}= & \left[V\right]_{{\scriptscriptstyle V^{\prime}}}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\\ \left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\overset{V}{\rightarrow}\boldsymbol{v}\overset{V^{\prime{\scriptscriptstyle -1}}}{\rightarrow}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}= & V^{\prime{\scriptscriptstyle -1}}V\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\\ \Downarrow\\ \left[V\right]_{{\scriptscriptstyle V^{\prime}}}= & V^{\prime{\scriptscriptstyle -1}}V\overset{\left[V^{\prime}\right]_{{\scriptscriptstyle V}}=\left[V\right]_{{\scriptscriptstyle V^{\prime}}}^{{\scriptscriptstyle -1}}}{\Longleftrightarrow}\left[V^{\prime}\right]_{{\scriptscriptstyle V}}=\left(V^{\prime{\scriptscriptstyle -1}}V\right)^{{\scriptscriptstyle -1}}=V^{{\scriptscriptstyle -1}}V^{\prime} \end{aligned}
\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}\rightarrow\left[\boldsymbol{w}\right]_{{\scriptscriptstyle W^{\prime}}}
\begin{aligned} \left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}\overset{T^{\prime}=\left[T\left(V^{\prime}\right)\right]_{{\scriptscriptstyle W^{\prime}}}}{\rightarrow}\left[\boldsymbol{w}\right]_{{\scriptscriptstyle W^{\prime}}}= & \left[T\left(V^{\prime}\right)\right]_{{\scriptscriptstyle W^{\prime}}}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}\\ \left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}\overset{\left[V^{\prime}\right]_{{\scriptscriptstyle V}}}{\rightarrow}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V}}\overset{T=\left[T\left(V\right)\right]_{{\scriptscriptstyle W}}}{\rightarrow}\left[\boldsymbol{w}\right]_{{\scriptscriptstyle W}}\overset{\left[W\right]_{{\scriptscriptstyle W^{\prime}}}}{\rightarrow}\left[\boldsymbol{w}\right]_{{\scriptscriptstyle W^{\prime}}}= & \left[W\right]_{{\scriptscriptstyle W^{\prime}}}\left[T\left(V\right)\right]_{{\scriptscriptstyle W}}\left[V^{\prime}\right]_{{\scriptscriptstyle V}}\left[\boldsymbol{v}\right]_{{\scriptscriptstyle V^{\prime}}}\\ \Downarrow\\ \left[T\left(V^{\prime}\right)\right]_{{\scriptscriptstyle W^{\prime}}}= & \left[W\right]_{{\scriptscriptstyle W^{\prime}}}\left[T\left(V\right)\right]_{{\scriptscriptstyle W}}\left[V^{\prime}\right]_{{\scriptscriptstyle V}}\\ = & W^{\prime{\scriptscriptstyle -1}}W\left[T\left(V\right)\right]_{{\scriptscriptstyle W}}V^{{\scriptscriptstyle -1}}V^{\prime}\\ = & W^{\prime{\scriptscriptstyle -1}}WW^{{\scriptscriptstyle -1}}T\left(V\right)V^{{\scriptscriptstyle -1}}V^{\prime}\\ = & W^{\prime{\scriptscriptstyle -1}}IT\left(V\right)V^{{\scriptscriptstyle -1}}V^{\prime}\\ = & W^{\prime{\scriptscriptstyle -1}}T\left(V\right)V^{{\scriptscriptstyle -1}}V^{\prime} \end{aligned}
\left[T\left(V^{\prime}\right)\right]_{{\scriptscriptstyle W^{\prime}}}\rightleftharpoons\left[T\left(V\right)\right]_{{\scriptscriptstyle W}}
\left[T\left(V^{\prime}\right)\right]_{{\scriptscriptstyle W^{\prime}}}=\left[W\right]_{{\scriptscriptstyle W^{\prime}}}\left[T\left(V\right)\right]_{{\scriptscriptstyle W}}\left[V^{\prime}\right]_{{\scriptscriptstyle V}}
\left[T\left(V^{\prime}\right)\right]_{{\scriptscriptstyle W^{\prime}}}=W^{\prime{\scriptscriptstyle -1}}T\left(V\right)V^{{\scriptscriptstyle -1}}V^{\prime}
\begin{aligned} W^{\prime}\left[T\left(V\right)\right]_{{\scriptscriptstyle W^{\prime}}}= & T\left(V\right)\\ \Downarrow\\ \left[T\left(V\right)\right]_{{\scriptscriptstyle W^{\prime}}}= & W^{\prime{\scriptscriptstyle -1}}T\left(V\right) \end{aligned}
\begin{aligned} \left[T\left(V^{\prime}\right)\right]_{{\scriptscriptstyle W^{\prime}}}= & W^{\prime{\scriptscriptstyle -1}}T\left(V\right)V^{{\scriptscriptstyle -1}}V^{\prime}\\ = & \left\{ W^{\prime{\scriptscriptstyle -1}}T\left(V\right)\right\} \left\{ V^{{\scriptscriptstyle -1}}V^{\prime}\right\} \\ = & \left\{ \left[T\left(V\right)\right]_{{\scriptscriptstyle W^{\prime}}}\right\} \left\{ V^{{\scriptscriptstyle -1}}V^{\prime}\right\} \\ = & \left[T\left(V\right)\right]_{{\scriptscriptstyle W^{\prime}}}V^{{\scriptscriptstyle -1}}V^{\prime}\\ , & \begin{cases} \left[T\left(V\right)\right]_{{\scriptscriptstyle W^{\prime}}}=W^{\prime{\scriptscriptstyle -1}}T\left(V\right) & :W^{\prime}\left[T\left(V\right)\right]_{{\scriptscriptstyle W^{\prime}}}=T\left(V\right)\\ V^{{\scriptscriptstyle -1}}V^{\prime} & :\left[V\middle|V^{\prime}\right]\overset{\text{Gauss-Jordan delimination}}{\longrightarrow}\left[I\middle|V^{{\scriptscriptstyle -1}}V^{\prime}\right] \end{cases} \end{aligned}
T^{\prime}\rightleftharpoons T
\begin{aligned} \left[T\left(V^{\prime}\right)\right]_{{\scriptscriptstyle W^{\prime}}}= & \left[W\right]_{{\scriptscriptstyle W^{\prime}}}\left[T\left(V\right)\right]_{{\scriptscriptstyle W}}\left[V^{\prime}\right]_{{\scriptscriptstyle V}}\\ T^{\prime}=\left[T\left(V^{\prime}\right)\right]_{{\scriptscriptstyle W^{\prime}}}\Updownarrow & T=\left[T\left(V\right)\right]_{{\scriptscriptstyle W}}\\ T^{\prime}= & \left[W\right]_{{\scriptscriptstyle W^{\prime}}}T\left[V^{\prime}\right]_{{\scriptscriptstyle V}}\\ = & \left[W^{\prime{\scriptscriptstyle -1}}W\right]T\left[V^{{\scriptscriptstyle -1}}V^{\prime}\right]\\ T^{\prime}= & W^{\prime{\scriptscriptstyle -1}}WTV^{{\scriptscriptstyle -1}}V^{\prime} \end{aligned}
T^{\prime}=W^{\prime{\scriptscriptstyle -1}}WTV^{{\scriptscriptstyle -1}}V^{\prime}
55.3 Chi, Chen-Yu
https://www.youtube.com/playlist?list=PLJWAeYEa8SXBej3kuQMz8vV41VabZUILb