Chapter 24: conic section
conic section 圓錐曲線 / 圓錐截痕
https://en.wikipedia.org/wiki/Conic_section
https://tex.stackexchange.com/questions/222882/drawing-minimal-xy-axis

Fig. 24.1: parabola defined by focus, directrix, eccentricity
24.1 Cartesian coordinate: focus, directrix, eccentricity
focus, directrix, eccentricity 焦點, 準線, 離心率
{F=(0,yF)F:focusL=y−yL=0L:directrixϵ=¯PFd(P,L)=‖(x,y)−(0,yF)‖‖y−yL‖{P=(x,y)ϵ:eccentricity
0≤ϵ=¯PFd(P,L)=¯PF¯PP′=‖(x,y)−(0,yF)‖‖(x,y)−(x,yL)‖=‖(x,y−yF)‖‖(0,y−yL)‖=√x2+(y−yF)2√(y−yL)2ϵ2=x2+(y−yF)2(y−yL)2=x2+y2−2yFy+y2Fy2−2yLy+y2L0=x2+(1−ϵ2)y2−2(yF−ϵ2yL)y+(y2F−ϵ2y2L)ϵ≠1=x2+(1−ϵ2)[y2−2(yF−ϵ2yL)1−ϵ2y+y2F−ϵ2y2L1−ϵ2]=x2+(1−ϵ2)[y2−2(yF−ϵ2yL)1−ϵ2y+(yF−ϵ2yL1−ϵ2)2−(yF−ϵ2yL1−ϵ2)2+y2F−ϵ2y2L1−ϵ2]=x2+(1−ϵ2)[(y−yF−ϵ2yL1−ϵ2)2+(y2F−ϵ2y2L)(1−ϵ2)−(yF−ϵ2yL)2(1−ϵ2)2]=x2+(1−ϵ2)(y−yF−ϵ2yL1−ϵ2)2+(y2F−ϵ2y2L)(1−ϵ2)−(yF−ϵ2yL)21−ϵ2
(y2F−ϵ2y2L)(1−ϵ2)−(yF−ϵ2yL)2=(1−ϵ2)y2F−(ϵ2−ϵ4)y2L−y2F+2ϵ2yFyL−ϵ4y2L=(1−ϵ2)y2F−(ϵ2−ϵ4)y2L−y2F+2ϵ2yFyL−ϵ4y2L=−ϵ2y2F−ϵ2y2L+2ϵ2yFyL=−ϵ2(yF−yL)2
ϵ2(yF−yL)21−ϵ2ϵ≠1=x2+(1−ϵ2)(y−yF−ϵ2yL1−ϵ2)21ϵ≠0,1={(x−0ϵ(yF−yL)√1−ϵ2)2+(y−yF−ϵ2yL1−ϵ2ϵ(yF−yL)1−ϵ2)21−ϵ2>0ϵ≥0⇒0<ϵ<1−(x−0ϵ(yF−yL)√ϵ2−1)2+(y−yF−ϵ2yL1−ϵ2ϵ(yF−yL)1−ϵ2)21−ϵ2<0ϵ≥0⇒ϵ>1
ϵ=0 or lim|yL|→∞ϵ=0
r=¯PF=‖(x,y)−(0,yF)‖=‖(x,y−yF)‖=√x2+(y−yF)2
ϵ=rd(P,L)=¯PF¯PP′=‖(x,y)−(0,yF)‖‖(x,y)−(x,yL)‖=‖(x,y−yF)‖‖(0,y−yL)‖=√x2+(y−yF)2|y−yL|
lim|yL|→∞ϵ=lim|yL|→∞rd(P,L)=lim|yL|→∞√x2+(y−yF)2|y−yL|=0
ϵ=1
0=x2+(1−ϵ2)y2−2(yF−ϵ2yL)y+(y2F−ϵ2y2L)ϵ=1=x2+(1−12)y2−2(yF−12yL)y+(y2F−12y2L)=x2−2(yF−yL)y+(y2F−y2L)=x2−2(yF−yL)y+(yF+yL)(yF−yL)x2=2(yF−yL)(y−yF+yL2)
Let one curve vertex P=V=(0,0) on the curve, and fix the directrix L or yL,
ϵ≠1 1P(x,y)=V(0,0)=0+(0−yF−ϵ2yL1−ϵ2ϵ(yF−yL)1−ϵ2)2⇒yF−ϵ2yL=±ϵ(yF−yL)⇒{(1−ϵ)yF=ϵ(ϵ−1)yL+(1+ϵ)yF=ϵ(ϵ+1)yL−⇒yF={−ϵyL+ϵyL−
ϵ=1 x2=2(yF−yL)(y−yF+yL2)P(x,y)=V(0,0)⇒02=2(yF−yL)(0−yF+yL2)⇒0=(yF−yL)(yF+yL)⇒yF=∓yL
or by definition of eccentricity (24.1)
0≤ϵ=¯PFd(P,L)=¯PF¯PP′=‖(x,y)−(0,yF)‖‖(x,y)−(x,yL)‖=‖(x,y−yF)‖‖(0,y−yL)‖=√x2+(y−yF)2√(y−yL)2P(x,y)=V(0,0)=√02+(0−yF)2√(0−yL)2=√(yFyL)2ϵ2=(yFyL)2⇒yF=∓ϵyL
actually,
yF=−ϵyL
24.2 two-definition equivalence for ellipse and hyperbola
https://www.geogebra.org/calculator/zkppuxwp
Fig. 17.1: conic sections
{P=(x,y)F=(xF,yF)=(α,φ)F′=(xF′,yF′)=(χ,ψ)L=A′x+B′y+C′=0
24.2.1 first definition for conic sections including ellipses and hyperbolas
distance from a point to a line[^25^]
0≤ϵ=¯PFd(P,L)=√(x−xF)2+(y−yF)2|A′x+B′y+C′|√A′2+B′2=√(x−α)2+(y−φ)2|Ax+By+C|,{A=A′√A′2+B′2B=B′√A′2+B′2C=C′√A′2+B′2
A2+B2=(A′√A′2+B′2)2+(B′√A′2+B′2)2=1
or allowing ϵ<0 by squaring the definition
ϵ2=(x−α)2+(y−φ)2(Ax+By+C)2=(x−xF)2+(y−yF)2(A′x+B′y+C′)2A′2+B′2
(x−α)2+(y−φ)2=[ϵ(Ax+By+C)]2
24.2.2 second definition for ellipses and hyperbolas
2c=¯FF′=‖(xF,yF)−(xF′,yF′)‖=‖(α,φ)−(χ,ψ)‖=√(α−χ)2+(χ−ψ)2
D={√(x−xF)2+(y−yF)2+√(x−xF′)2+(y−yF′)2ellipse√(x−xF)2+(y−yF)2−√(x−xF′)2+(y−yF′)2hyperbola=√(x−xF)2+(y−yF)2±√(x−xF′)2+(y−yF′)2=√(x−α)2+(y−φ)2±√(x−χ)2+(y−ψ)2
(x−α)2+(y−φ)2=(D∓√(x−χ)2+(y−ψ)2)2=D2∓2D√(x−χ)2+(y−ψ)2+(x−χ)2+(y−ψ)2
D2=(x−α)2+(y−φ)2+(x−χ)2+(y−ψ)2±2√[(x−α)2+(y−φ)2][(x−χ)2+(y−ψ)2](x−α)2+(y−φ)2+(x−χ)2+(y−ψ)2−D2=∓2√[(x−α)2+(y−φ)2][(x−χ)2+(y−ψ)2][(x−α)2+(y−φ)2+(x−χ)2+(y−ψ)2]2+D4−2D2[(x−α)2+(y−φ)2+(x−χ)2+(y−ψ)2]=4[(x−α)2+(y−φ)2][(x−χ)2+(y−ψ)2][(x−α)2+(y−φ)2]2+[(x−χ)2+(y−ψ)2]2+2[(x−α)2+(y−φ)2][(x−χ)2+(y−ψ)2]+D4−2D2[(x−α)2+(y−φ)2+(x−χ)2+(y−ψ)2]=4[(x−α)2+(y−φ)2][(x−χ)2+(y−ψ)2]0=[(x−α)2+(y−φ)2]2+[(x−χ)2+(y−ψ)2]2−2[(x−α)2+(y−φ)2][(x−χ)2+(y−ψ)2]+D4−2D2[(x−α)2+(y−φ)2+(x−χ)2+(y−ψ)2]0={[(x−α)2+(y−φ)2]−[(x−χ)2+(y−ψ)2]}2+D4−2D2{[(x−α)2+(y−φ)2]+[(x−χ)2+(y−ψ)2]}0={[(x−χ)2+(y−ψ)2]−[(x−α)2+(y−φ)2]}2+D4−2D2{[(x−χ)2+(y−ψ)2]−[(x−α)2+(y−φ)2]}−4D2[(x−α)2+(y−φ)2](2D)2[(x−α)2+(y−φ)2]={[(x−χ)2+(y−ψ)2]−[(x−α)2+(y−φ)2]−D2}2={[(x−χ)2−(x−α)2]+[(y−ψ)2−(y−φ)2]−D2}2={(2x−χ−α)(α−χ)+(2y−ψ−φ)(φ−ψ)−D2}2={2(α−χ)x−(α2−χ2)+2(φ−ψ)y−(φ2−ψ2)−D2}2={2(α−χ)x+2(φ−ψ)y−[(α2−χ2)+(φ2−ψ2)+D2]}2D≠0(x−α)2+(y−φ)2=[α−χDx+φ−ψDy−(α2−χ22D+φ2−ψ22D+D2)]2
{(x−α)2+(y−φ)2=[ϵ(Ax+By+C)]2(x−α)2+(y−φ)2=[α−χDx+φ−ψDy−(α2−χ22D+φ2−ψ22D+D2)]2
(A,B,C)⇄(χ,ψ,D)
{ϵA=±α−χDχ±ϵAD=αϵB=±φ−ψDψ±ϵBD=φϵC=∓(α2−χ22D+φ2−ψ22D+D2)
2ϵC=∓(α−χD(α+χ)+φ−ψD(φ+ψ)+D)=∓(±ϵA(α+χ)±ϵB(φ+ψ)+D)∓ϵ(Aα+Bφ+2C)=±ϵAχ±ϵBψ+D
(10±ϵA01±ϵB±ϵA±ϵB1)(χψD)=(αφ∓ϵ(Aα+Bφ+2C))
(10±ϵAα01±ϵBφ0±ϵB1∓ϵ2A2∓ϵ(2Aα+Bφ+2C))
(10±ϵAα01±ϵBφ001∓ϵ2A2∓ϵ2B2∓ϵ(2Aα+2Bφ+2C))
(10±ϵAα01±ϵBφ001∓2ϵ(Aα+Bφ+C)1∓ϵ2(A2+B2))
A2+B2=(A′√A′2+B′2)2+(B′√A′2+B′2)2=1
{χ=α∓ϵAD=α∓ϵA′√A′2+B′2Dψ=φ∓ϵBD=φ∓ϵB′√A′2+B′2DD=∓2ϵ(Aα+Bφ+C)1∓ϵ2(A2+B2)=∓2ϵ1∓ϵ2A′α+B′φ+C′√A′2+B′2A2+B2=1
actually, only one of two solutions is true
{χ=α−ϵAD=α−ϵA′√A′2+B′2D=α−2ϵ2ϵ2−1A′2α+A′B′φ+A′C′A′2+B′2ψ=φ−ϵBD=φ−ϵB′√A′2+B′2D=φ−2ϵ2ϵ2−1A′B′α+B′2φ+B′C′A′2+B′2D=−2ϵ(Aα+Bφ+C)1−ϵ2(A2+B2)=−2ϵ1−ϵ2A′α+B′φ+C′√A′2+B′2=2ϵϵ2−1A′α+B′φ+C′√A′2+B′2
{χ=(ϵ2−1)(A′2+B′2)α−2ϵ2(A′2α+A′B′φ+A′C′)(ϵ2−1)(A′2+B′2)ψ=(ϵ2−1)(A′2+B′2)φ−2ϵ2(A′B′α+B′2φ+B′C′)(ϵ2−1)(A′2+B′2)|Dd(F,L)|=|2ϵ1−ϵ2|⇒(Dd(F,L))2=(2ϵ1−ϵ2)2
(ϵ2−1)(A′2+B′2)α−2ϵ2(A′2α+A′B′φ+A′C′)=(−(ϵ2+1)A′2+(ϵ2−1)B′2)α−2ϵ2(A′B′φ+A′C′)=(−(ϵ2+1)A′2+(ϵ2−1)B′2)α−2ϵ2(A′B′φ+A′C′)
Can the above be more simplified?
¯FF′2=(α−χ)2+(φ−ψ)2=(α−(α−ϵAD))2+(φ−(φ−ϵBD))2=(ϵD)2(A2+B2)=(ϵD)2
24.3 Cartesian coordinate: standard form / standard equation
circle(y−ka)2+(x−ha)2=1b=aellipse(y−kb)2+(x−ha)2=1verticalb>a(y−kb)2+(x−ha)2=1horizontala>bparabola(y−k)−4c(x−h)2=0vertical−4c(y−k)2+(x−h)=0horizontalhyperbola(y−kb)2−(x−ha)2=1verticalx−ha=0⇒y−kb=±1−(y−kb)2+(x−ha)2=1horizontaly−kb=0⇒x−ha=±1
24.4 parametric equation
circle(y−ka)2+(x−ha)2=1(xy1)=(a0h0ak001)(costsint1)=(cost0h0sintk001)(aa1)ellipse(y−kb)2+(x−ha)2=1(xy1)=(a0h0bk001)(costsint1)=(cost0h0sintk001)(ab1)parabola(y−k)−4c(x−h)2=0(xy1)=(10h04ck001)(tt21)=(t0h0t2k001)(14c1)−4c(y−k)2+(x−h)=0(xy1)=(4c0h01k001)(t2t1)=(t20h0tk001)(4c11)hyperbola(y−kb)2−(x−ha)2=1(xy1)=(a0h0bk001)(±coshtsinht1)=(tant0h0sectk001)(ab1)−(y−kb)2+(x−ha)2=1(xy1)=(a0h0bk001)(sinht±cosht1)=(sect0h0tantk001)(ab1)
24.5 polar coordinate
(x−α)2+(y−φ)2=[ϵ(Ax+By+C)]2
{x=rcosθy=rsinθ
(rcosθ−α)2+(rsinθ−φ)2=[ϵ(Arcosθ+Brsinθ+C)]2
If {F=(xF,yF)=(α,φ)=(0,0)L=Ax+By+C=x+p=0
(rcosθ)2+(rsinθ)2=[ϵ(rcosθ+p)]2r2=r=±ϵ(rcosθ+p)=±(rϵcosθ+ϵp)r(1∓ϵcosθ)=ϵpr=ϵp1∓ϵcosθ
https://www.geogebra.org/calculator/azksjxbq
r=ϵp1−ϵcosθ will not cross L=x+p=0 on graphs, so maybe it is a more correct solution
r=ϵp1−ϵcosθ
Fig. 16.2: polar conic sections: ellipse
Fig. 24.3: polar conic sections: parabola
Fig. 24.4: polar conic sections: hyperbola
24.6 Cartesian coordinate: general form / quadratic equation
https://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections
ax2+bxy+cy2+dx+ey+f=0
(xy)(ab/2b/2c)(xy)=(xy)(ax+(b/2)y(b/2)x+cy)=ax2+bxy+cy2
0=(xy)(ab/2b/2c)(xy)+(de)(xy)+f=x⊺Ax+b⊺x+f,{A=(ab/2b/2c)A real symmetricb=(de)x=(xy)
24.7 homogeneous coordinate
homogeneous coordinate O: HTML, X: PDF becoming web link
X homogeneous coordinate[24.7]
(xy)(ab/2b/2c)(xy)=(xy1)(ab/2 b/2c)(xy1)=(xy1)(ab/20b/2c0000)(xy1)
(de)(xy)=(xy1)(αβγδϵζηθκ)(xy1)=(xy1)(αx+βy+γδx+ϵy+ζηx+θy+κ),{γ+η=dζ+θ=e=(xy1)(00γ00ζηθ0)(xy1)=(xy1)(00d/200e/2d/2e/20)(xy1)
0=ax2+bxy+cy2+dx+ey+f=(xy)(ab/2b/2c)(xy)+(de)(xy)+f=x⊺Ax+b⊺x+f=(xy1)(ab/2d/2b/2ce/2d/2e/2f)(xy1)=(x⊺1)M(x1),M=(ab/2d/2b/2ce/2d/2e/2f)
0=ax2+bxy+cy2+dx+ey+f=(xy)(ab/2b/2c)(xy)+(de)(xy)+f=x⊺Ax+b⊺x+f=(xy1)(ab/2d/2b/2ce/2d/2e/2f)(xy1)=(x⊺1)M(x1),M=(ab/2d/2b/2ce/2d/2e/2f)
https://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections
0=Q=Ax2+Bxy+Cy2+Dx+Ey+F=[xy1][AB/2D/2B/2CE/2D/2E/2F][xy1]=x⊺hAQxh=[xy][AB/2B/2C][xy]+[DE][xy]+F=x⊺AQ,33x+b⊺x+F
24.8 TalyorCatAlice: projective geometry
https://www.bilibili.com/video/BV1pK42117UZ
https://www.bilibili.com/video/BV1cx4y1f7w6
https://www.bilibili.com/video/BV1sy421h7aF
https://www.bilibili.com/video/BV1zv421y7iH
https://www.bilibili.com/video/BV1ZH4y1h7vC