Chapter 24: conic section

conic section 圓錐曲線 / 圓錐截痕

https://en.wikipedia.org/wiki/Conic_section

https://tex.stackexchange.com/questions/222882/drawing-minimal-xy-axis

parabola defined by focus, directrix, eccentricity

Fig. 24.1: parabola defined by focus, directrix, eccentricity

24.1 Cartesian coordinate: focus, directrix, eccentricity

focus, directrix, eccentricity 焦點, 準線, 離心率

{F=(0,yF)F:focusL=yyL=0L:directrixϵ=¯PFd(P,L)=(x,y)(0,yF)yyL{P=(x,y)ϵ:eccentricity

0ϵ=¯PFd(P,L)=¯PF¯PP=(x,y)(0,yF)(x,y)(x,yL)=(x,yyF)(0,yyL)=x2+(yyF)2(yyL)2ϵ2=x2+(yyF)2(yyL)2=x2+y22yFy+y2Fy22yLy+y2L0=x2+(1ϵ2)y22(yFϵ2yL)y+(y2Fϵ2y2L)ϵ1=x2+(1ϵ2)[y22(yFϵ2yL)1ϵ2y+y2Fϵ2y2L1ϵ2]=x2+(1ϵ2)[y22(yFϵ2yL)1ϵ2y+(yFϵ2yL1ϵ2)2(yFϵ2yL1ϵ2)2+y2Fϵ2y2L1ϵ2]=x2+(1ϵ2)[(yyFϵ2yL1ϵ2)2+(y2Fϵ2y2L)(1ϵ2)(yFϵ2yL)2(1ϵ2)2]=x2+(1ϵ2)(yyFϵ2yL1ϵ2)2+(y2Fϵ2y2L)(1ϵ2)(yFϵ2yL)21ϵ2

(y2Fϵ2y2L)(1ϵ2)(yFϵ2yL)2=(1ϵ2)y2F(ϵ2ϵ4)y2Ly2F+2ϵ2yFyLϵ4y2L=(1ϵ2)y2F(ϵ2ϵ4)y2Ly2F+2ϵ2yFyLϵ4y2L=ϵ2y2Fϵ2y2L+2ϵ2yFyL=ϵ2(yFyL)2

ϵ2(yFyL)21ϵ2ϵ1=x2+(1ϵ2)(yyFϵ2yL1ϵ2)21ϵ0,1={(x0ϵ(yFyL)1ϵ2)2+(yyFϵ2yL1ϵ2ϵ(yFyL)1ϵ2)21ϵ2>0ϵ00<ϵ<1(x0ϵ(yFyL)ϵ21)2+(yyFϵ2yL1ϵ2ϵ(yFyL)1ϵ2)21ϵ2<0ϵ0ϵ>1

ϵ=0 or lim|yL|ϵ=0

r=¯PF=(x,y)(0,yF)=(x,yyF)=x2+(yyF)2

ϵ=rd(P,L)=¯PF¯PP=(x,y)(0,yF)(x,y)(x,yL)=(x,yyF)(0,yyL)=x2+(yyF)2|yyL|

lim|yL|ϵ=lim|yL|rd(P,L)=lim|yL|x2+(yyF)2|yyL|=0

ϵ=1

0=x2+(1ϵ2)y22(yFϵ2yL)y+(y2Fϵ2y2L)ϵ=1=x2+(112)y22(yF12yL)y+(y2F12y2L)=x22(yFyL)y+(y2Fy2L)=x22(yFyL)y+(yF+yL)(yFyL)x2=2(yFyL)(yyF+yL2)

Let one curve vertex P=V=(0,0) on the curve, and fix the directrix L or yL,

ϵ1 1P(x,y)=V(0,0)=0+(0yFϵ2yL1ϵ2ϵ(yFyL)1ϵ2)2yFϵ2yL=±ϵ(yFyL){(1ϵ)yF=ϵ(ϵ1)yL+(1+ϵ)yF=ϵ(ϵ+1)yLyF={ϵyL+ϵyL

ϵ=1 x2=2(yFyL)(yyF+yL2)P(x,y)=V(0,0)02=2(yFyL)(0yF+yL2)0=(yFyL)(yF+yL)yF=yL

or by definition of eccentricity (24.1)

0ϵ=¯PFd(P,L)=¯PF¯PP=(x,y)(0,yF)(x,y)(x,yL)=(x,yyF)(0,yyL)=x2+(yyF)2(yyL)2P(x,y)=V(0,0)=02+(0yF)2(0yL)2=(yFyL)2ϵ2=(yFyL)2yF=ϵyL

actually,

yF=ϵyL

24.2 two-definition equivalence for ellipse and hyperbola

https://math.stackexchange.com/questions/1833973/prove-that-the-directrix-focus-and-focus-focus-definitions-are-equivalent

https://www.geogebra.org/calculator/zkppuxwp

conic sections

Fig. 17.1: conic sections

{P=(x,y)F=(xF,yF)=(α,φ)F=(xF,yF)=(χ,ψ)L=Ax+By+C=0

24.2.1 first definition for conic sections including ellipses and hyperbolas

distance from a point to a line[^25^]

0ϵ=¯PFd(P,L)=(xxF)2+(yyF)2|Ax+By+C|A2+B2=(xα)2+(yφ)2|Ax+By+C|,{A=AA2+B2B=BA2+B2C=CA2+B2

A2+B2=(AA2+B2)2+(BA2+B2)2=1

or allowing ϵ<0 by squaring the definition

ϵ2=(xα)2+(yφ)2(Ax+By+C)2=(xxF)2+(yyF)2(Ax+By+C)2A2+B2

(xα)2+(yφ)2=[ϵ(Ax+By+C)]2

24.2.2 second definition for ellipses and hyperbolas

2c=¯FF=(xF,yF)(xF,yF)=(α,φ)(χ,ψ)=(αχ)2+(χψ)2

D={(xxF)2+(yyF)2+(xxF)2+(yyF)2ellipse(xxF)2+(yyF)2(xxF)2+(yyF)2hyperbola=(xxF)2+(yyF)2±(xxF)2+(yyF)2=(xα)2+(yφ)2±(xχ)2+(yψ)2

(xα)2+(yφ)2=(D(xχ)2+(yψ)2)2=D22D(xχ)2+(yψ)2+(xχ)2+(yψ)2

D2=(xα)2+(yφ)2+(xχ)2+(yψ)2±2[(xα)2+(yφ)2][(xχ)2+(yψ)2](xα)2+(yφ)2+(xχ)2+(yψ)2D2=2[(xα)2+(yφ)2][(xχ)2+(yψ)2][(xα)2+(yφ)2+(xχ)2+(yψ)2]2+D42D2[(xα)2+(yφ)2+(xχ)2+(yψ)2]=4[(xα)2+(yφ)2][(xχ)2+(yψ)2][(xα)2+(yφ)2]2+[(xχ)2+(yψ)2]2+2[(xα)2+(yφ)2][(xχ)2+(yψ)2]+D42D2[(xα)2+(yφ)2+(xχ)2+(yψ)2]=4[(xα)2+(yφ)2][(xχ)2+(yψ)2]0=[(xα)2+(yφ)2]2+[(xχ)2+(yψ)2]22[(xα)2+(yφ)2][(xχ)2+(yψ)2]+D42D2[(xα)2+(yφ)2+(xχ)2+(yψ)2]0={[(xα)2+(yφ)2][(xχ)2+(yψ)2]}2+D42D2{[(xα)2+(yφ)2]+[(xχ)2+(yψ)2]}0={[(xχ)2+(yψ)2][(xα)2+(yφ)2]}2+D42D2{[(xχ)2+(yψ)2][(xα)2+(yφ)2]}4D2[(xα)2+(yφ)2](2D)2[(xα)2+(yφ)2]={[(xχ)2+(yψ)2][(xα)2+(yφ)2]D2}2={[(xχ)2(xα)2]+[(yψ)2(yφ)2]D2}2={(2xχα)(αχ)+(2yψφ)(φψ)D2}2={2(αχ)x(α2χ2)+2(φψ)y(φ2ψ2)D2}2={2(αχ)x+2(φψ)y[(α2χ2)+(φ2ψ2)+D2]}2D0(xα)2+(yφ)2=[αχDx+φψDy(α2χ22D+φ2ψ22D+D2)]2

{(xα)2+(yφ)2=[ϵ(Ax+By+C)]2(xα)2+(yφ)2=[αχDx+φψDy(α2χ22D+φ2ψ22D+D2)]2

(A,B,C)(χ,ψ,D)

{ϵA=±αχDχ±ϵAD=αϵB=±φψDψ±ϵBD=φϵC=(α2χ22D+φ2ψ22D+D2)

2ϵC=(αχD(α+χ)+φψD(φ+ψ)+D)=(±ϵA(α+χ)±ϵB(φ+ψ)+D)ϵ(Aα+Bφ+2C)=±ϵAχ±ϵBψ+D

(10±ϵA01±ϵB±ϵA±ϵB1)(χψD)=(αφϵ(Aα+Bφ+2C))

(10±ϵAα01±ϵBφ0±ϵB1ϵ2A2ϵ(2Aα+Bφ+2C))

(10±ϵAα01±ϵBφ001ϵ2A2ϵ2B2ϵ(2Aα+2Bφ+2C))

(10±ϵAα01±ϵBφ0012ϵ(Aα+Bφ+C)1ϵ2(A2+B2))

A2+B2=(AA2+B2)2+(BA2+B2)2=1

{χ=αϵAD=αϵAA2+B2Dψ=φϵBD=φϵBA2+B2DD=2ϵ(Aα+Bφ+C)1ϵ2(A2+B2)=2ϵ1ϵ2Aα+Bφ+CA2+B2A2+B2=1

actually, only one of two solutions is true

{χ=αϵAD=αϵAA2+B2D=α2ϵ2ϵ21A2α+ABφ+ACA2+B2ψ=φϵBD=φϵBA2+B2D=φ2ϵ2ϵ21ABα+B2φ+BCA2+B2D=2ϵ(Aα+Bφ+C)1ϵ2(A2+B2)=2ϵ1ϵ2Aα+Bφ+CA2+B2=2ϵϵ21Aα+Bφ+CA2+B2

{χ=(ϵ21)(A2+B2)α2ϵ2(A2α+ABφ+AC)(ϵ21)(A2+B2)ψ=(ϵ21)(A2+B2)φ2ϵ2(ABα+B2φ+BC)(ϵ21)(A2+B2)|Dd(F,L)|=|2ϵ1ϵ2|(Dd(F,L))2=(2ϵ1ϵ2)2

(ϵ21)(A2+B2)α2ϵ2(A2α+ABφ+AC)=((ϵ2+1)A2+(ϵ21)B2)α2ϵ2(ABφ+AC)=((ϵ2+1)A2+(ϵ21)B2)α2ϵ2(ABφ+AC)

Can the above be more simplified?

¯FF2=(αχ)2+(φψ)2=(α(αϵAD))2+(φ(φϵBD))2=(ϵD)2(A2+B2)=(ϵD)2

24.2.3 eccentricity and its equivalent representation

(ca)2=(¯PFd(P,L))2=ϵ2=(¯FFD)2=(2cD)2D=2a

(Dd(F,L))2=(2ϵ1ϵ2)2

conic sections: ellipse

Fig. 17.2: conic sections: ellipse

conic sections: parabola

Fig. 24.2: conic sections: parabola

conic sections: hyperbola

Fig. 16.1: conic sections: hyperbola

24.3 Cartesian coordinate: standard form / standard equation

circle(yka)2+(xha)2=1b=aellipse(ykb)2+(xha)2=1verticalb>a(ykb)2+(xha)2=1horizontala>bparabola(yk)4c(xh)2=0vertical4c(yk)2+(xh)=0horizontalhyperbola(ykb)2(xha)2=1verticalxha=0ykb=±1(ykb)2+(xha)2=1horizontalykb=0xha=±1

24.4 parametric equation

circle(yka)2+(xha)2=1(xy1)=(a0h0ak001)(costsint1)=(cost0h0sintk001)(aa1)ellipse(ykb)2+(xha)2=1(xy1)=(a0h0bk001)(costsint1)=(cost0h0sintk001)(ab1)parabola(yk)4c(xh)2=0(xy1)=(10h04ck001)(tt21)=(t0h0t2k001)(14c1)4c(yk)2+(xh)=0(xy1)=(4c0h01k001)(t2t1)=(t20h0tk001)(4c11)hyperbola(ykb)2(xha)2=1(xy1)=(a0h0bk001)(±coshtsinht1)=(tant0h0sectk001)(ab1)(ykb)2+(xha)2=1(xy1)=(a0h0bk001)(sinht±cosht1)=(sect0h0tantk001)(ab1)

tangent half-angle formula[27]

24.5 polar coordinate

(xα)2+(yφ)2=[ϵ(Ax+By+C)]2

{x=rcosθy=rsinθ

(rcosθα)2+(rsinθφ)2=[ϵ(Arcosθ+Brsinθ+C)]2

If {F=(xF,yF)=(α,φ)=(0,0)L=Ax+By+C=x+p=0

(rcosθ)2+(rsinθ)2=[ϵ(rcosθ+p)]2r2=r=±ϵ(rcosθ+p)=±(rϵcosθ+ϵp)r(1ϵcosθ)=ϵpr=ϵp1ϵcosθ

https://www.geogebra.org/calculator/azksjxbq

r=ϵp1ϵcosθ will not cross L=x+p=0 on graphs, so maybe it is a more correct solution

r=ϵp1ϵcosθ

polar conic sections: ellipse

Fig. 16.2: polar conic sections: ellipse

polar conic sections: parabola

Fig. 24.3: polar conic sections: parabola

polar conic sections: hyperbola

Fig. 24.4: polar conic sections: hyperbola

24.6 Cartesian coordinate: general form / quadratic equation

https://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections

ax2+bxy+cy2+dx+ey+f=0

(xy)(ab/2b/2c)(xy)=(xy)(ax+(b/2)y(b/2)x+cy)=ax2+bxy+cy2

0=(xy)(ab/2b/2c)(xy)+(de)(xy)+f=xAx+bx+f,{A=(ab/2b/2c)A real symmetricb=(de)x=(xy)

real symmetric matrix diagonalizable[26]

24.7 homogeneous coordinate

X homogeneous coordinate

homogeneous coordinate O: HTML, X: PDF becoming web link

O homogeneous coordinate[28]

X homogeneous coordinate

X homogeneous coordinate[24.7]

(xy)(ab/2b/2c)(xy)=(xy1)(ab/2 b/2c)(xy1)=(xy1)(ab/20b/2c0000)(xy1)

(de)(xy)=(xy1)(αβγδϵζηθκ)(xy1)=(xy1)(αx+βy+γδx+ϵy+ζηx+θy+κ),{γ+η=dζ+θ=e=(xy1)(00γ00ζηθ0)(xy1)=(xy1)(00d/200e/2d/2e/20)(xy1)

0=ax2+bxy+cy2+dx+ey+f=(xy)(ab/2b/2c)(xy)+(de)(xy)+f=xAx+bx+f=(xy1)(ab/2d/2b/2ce/2d/2e/2f)(xy1)=(x1)M(x1),M=(ab/2d/2b/2ce/2d/2e/2f)

0=ax2+bxy+cy2+dx+ey+f=(xy)(ab/2b/2c)(xy)+(de)(xy)+f=xAx+bx+f=(xy1)(ab/2d/2b/2ce/2d/2e/2f)(xy1)=(x1)M(x1),M=(ab/2d/2b/2ce/2d/2e/2f)

https://en.wikipedia.org/wiki/Matrix_representation_of_conic_sections

0=Q=Ax2+Bxy+Cy2+Dx+Ey+F=[xy1][AB/2D/2B/2CE/2D/2E/2F][xy1]=xhAQxh=[xy][AB/2B/2C][xy]+[DE][xy]+F=xAQ,33x+bx+F

24.10 theorem proof without analytic method

https://www.zhihu.com/question/470672139/answer/2873265380