Chapter 62: computer graphics
62.1 Cem Yuksel
62.1.1 introduction
https://www.youtube.com/playlist?list=PLplnkTzzqsZTfYh4UbhLGpI5kGd5oW_Hh
62.1.1.1 2D transformation
https://www.youtube.com/watch?v=EKN7dTJ4ep8&list=PLplnkTzzqsZTfYh4UbhLGpI5kGd5oW_Hh&index=6
62.1.1.1.1 translation
\[ \boldsymbol{p}^{\prime}=\boldsymbol{p}+\boldsymbol{t}\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime} \end{bmatrix}=\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}} \end{bmatrix}+\begin{bmatrix}t_{{\scriptscriptstyle x}}\\ t_{{\scriptscriptstyle y}} \end{bmatrix}=\begin{bmatrix}p_{{\scriptscriptstyle x}}+t_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}+t_{{\scriptscriptstyle y}} \end{bmatrix} \]
62.1.1.1.2 scale
\[ \boldsymbol{p}^{\prime}=s\boldsymbol{p}\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime} \end{bmatrix}=s\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}} \end{bmatrix}=\begin{bmatrix}sp_{{\scriptscriptstyle x}}\\ sp_{{\scriptscriptstyle y}} \end{bmatrix} \]
62.1.1.1.3 non-uniform scale
\[ \boldsymbol{p}^{\prime}=\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime} \end{bmatrix}=\begin{bmatrix}s_{{\scriptscriptstyle x}}p_{{\scriptscriptstyle x}}\\ s_{{\scriptscriptstyle y}}p_{{\scriptscriptstyle y}} \end{bmatrix}=\begin{bmatrix}s_{{\scriptscriptstyle x}} & 0\\ 0 & s_{{\scriptscriptstyle y}} \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}} \end{bmatrix}=S\boldsymbol{p} \]
62.1.1.1.4 rotation
\[ \boldsymbol{p}=p_{{\scriptscriptstyle x}}\hat{\boldsymbol{x}}+p_{{\scriptscriptstyle y}}\hat{\boldsymbol{y}}=p_{{\scriptscriptstyle x}}\begin{bmatrix}1\\ 0 \end{bmatrix}+p_{{\scriptscriptstyle y}}\begin{bmatrix}0\\ 1 \end{bmatrix}=\begin{bmatrix}1 & 0\\ 0 & 1 \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}} \end{bmatrix}=I\boldsymbol{p} \]
\[ \boldsymbol{p}^{\prime}=p_{{\scriptscriptstyle x}}\begin{bmatrix}\cos\theta\\ \sin\theta \end{bmatrix}+p_{{\scriptscriptstyle y}}\begin{bmatrix}-\sin\theta\\ \cos\theta \end{bmatrix}=\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}} \end{bmatrix}=R_{{\scriptscriptstyle \theta}}\boldsymbol{p} \]
\[ \boldsymbol{p}^{\prime}=p_{{\scriptscriptstyle x}}\begin{bmatrix}\cos\theta\\ -\sin\theta \end{bmatrix}+p_{{\scriptscriptstyle y}}\begin{bmatrix}\sin\theta\\ \cos\theta \end{bmatrix}=\begin{bmatrix}\cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}} \end{bmatrix}=R_{{\scriptscriptstyle -\theta}}\boldsymbol{p} \]
62.1.1.1.5 skew = rotation + non-uniform scale + rotation
\[ back\boldsymbol{p}^{\prime}=\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime} \end{bmatrix}=\begin{bmatrix}\cos\theta & \sin\theta\\ -\sin\theta & \cos\theta \end{bmatrix}\begin{bmatrix}s_{{\scriptscriptstyle x}} & 0\\ 0 & s_{{\scriptscriptstyle y}} \end{bmatrix}\begin{bmatrix}\cos\theta & -\sin\theta\\ \sin\theta & \cos\theta \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}} \end{bmatrix}=R_{{\scriptscriptstyle -\theta}}SR_{{\scriptscriptstyle \theta}}\boldsymbol{p} \]
62.1.1.1.6 any \(2\times2\) matrix
\[ \boldsymbol{p}^{\prime}=M\boldsymbol{p} \]
SVD = singular value decomposition
\[ M=U\varSigma V^{\intercal}\overset{\text{e.g.}}{=}RSR^{\intercal}=R_{{\scriptscriptstyle -\theta}}SR_{{\scriptscriptstyle \theta}} \]
any \(2\times2\) matrix + translation
\[ \boldsymbol{p}^{\prime}=M\boldsymbol{p}+\boldsymbol{t} \]
\[ \boldsymbol{p}^{\prime}=M_{{\scriptscriptstyle 2}}\left(M_{{\scriptscriptstyle 1}}\boldsymbol{p}+\boldsymbol{t}_{{\scriptscriptstyle 1}}\right)+\boldsymbol{t}_{{\scriptscriptstyle 2}} \]
62.1.1.1.7 homogeneous coordinate
\[ \boldsymbol{p}^{\prime}=\boldsymbol{p}+\boldsymbol{t} \]
\[ \boldsymbol{p}^{\prime}=T\boldsymbol{p}=\boldsymbol{p}+\boldsymbol{t} \]
\[ \begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime} \end{bmatrix}=\begin{bmatrix}p_{{\scriptscriptstyle x}}+t_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}+t_{{\scriptscriptstyle y}} \end{bmatrix}=\begin{bmatrix}1 & 0 & t_{{\scriptscriptstyle x}}\\ 0 & 1 & t_{{\scriptscriptstyle y}} \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}\\ 1 \end{bmatrix} \]
\[ \boldsymbol{p}^{\prime}=\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime}\\ 1 \end{bmatrix}=\begin{bmatrix}p_{{\scriptscriptstyle x}}+t_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}+t_{{\scriptscriptstyle y}}\\ 1 \end{bmatrix}=\begin{bmatrix}1 & 0 & t_{{\scriptscriptstyle x}}\\ 0 & 1 & t_{{\scriptscriptstyle y}}\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}\\ 1 \end{bmatrix}=T\boldsymbol{p} \]
\[ \boldsymbol{p}^{\prime}=M\boldsymbol{p}\boldsymbol{p}^{\prime}=\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime}\\ 1 \end{bmatrix}=\begin{bmatrix}a & c & e\\ b & d & f\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}\\ 1 \end{bmatrix}=M\boldsymbol{p} \]
62.1.1.1.8 position vs. direction
position vector: transformation affected by rotation and translation
\[ \boldsymbol{p}^{\prime}=\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime}\\ 1 \end{bmatrix}=\begin{bmatrix}a & c & e\\ b & d & f\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}\\ 1 \end{bmatrix}=M\boldsymbol{p} \]
direction vector: transformation affected by only rotation but not translation
\[ \boldsymbol{d}^{\prime}=\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime}\\ 0 \end{bmatrix}=\begin{bmatrix}a & c & e\\ b & d & f\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}\\ 0 \end{bmatrix}=M\boldsymbol{d} \]
62.1.1.2 3D transformation
https://www.youtube.com/watch?v=1z1S2kQKXDs&list=PLplnkTzzqsZTfYh4UbhLGpI5kGd5oW_Hh&index=7
62.1.1.2.1 homogeneous coordinate
affine transformation
\[ \boldsymbol{p}^{\prime}=\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime}\\ 1 \end{bmatrix}=\begin{bmatrix}a & c & e\\ b & d & f\\ 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}\\ 1 \end{bmatrix}=M\boldsymbol{p} \]
\[ \boldsymbol{p}^{\prime}=\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime}\\ p_{{\scriptscriptstyle z}}^{\prime}\\ 1 \end{bmatrix}=\begin{bmatrix}a & d & g & j\\ b & e & h & k\\ c & f & i & l\\ 0 & 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}\\ p_{{\scriptscriptstyle z}}\\ 1 \end{bmatrix}=M\boldsymbol{p} \]
62.1.1.2.2 scale
\[ \boldsymbol{p}^{\prime}=\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime}\\ p_{{\scriptscriptstyle z}}^{\prime}\\ 1 \end{bmatrix}=\begin{bmatrix}s_{{\scriptscriptstyle x}} & 0 & 0 & 0\\ 0 & s_{{\scriptscriptstyle y}} & 0 & 0\\ 0 & 0 & s_{{\scriptscriptstyle z}} & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}\\ p_{{\scriptscriptstyle z}}\\ 1 \end{bmatrix}=S\boldsymbol{p} \]
62.1.1.2.3 translation
\[ \boldsymbol{p}^{\prime}=\begin{bmatrix}p_{{\scriptscriptstyle x}}^{\prime}\\ p_{{\scriptscriptstyle y}}^{\prime}\\ p_{{\scriptscriptstyle z}}^{\prime}\\ 1 \end{bmatrix}=\begin{bmatrix}1 & 0 & 0 & t_{{\scriptscriptstyle x}}\\ 0 & 1 & 0 & t_{{\scriptscriptstyle y}}\\ 0 & 0 & 1 & t_{{\scriptscriptstyle z}}\\ 0 & 0 & 0 & 1 \end{bmatrix}\begin{bmatrix}p_{{\scriptscriptstyle x}}\\ p_{{\scriptscriptstyle y}}\\ p_{{\scriptscriptstyle z}}\\ 1 \end{bmatrix}=T\boldsymbol{p} \]
62.1.2 interactive
https://www.youtube.com/playlist?list=PLplnkTzzqsZS3R5DjmCQsqupu43oS9CFN