Chapter 11: test2
https://www.overleaf.com/learn/latex/Commands
\newcommand
\renewcommand
to replace existing command
https://www.physicsread.com/latex-newcommand/
font color[10.6.1]sin(α),sinn(β),sinm(γ)
cos(2θ)−sin(2θ)=cos(4θ)
θ=tan−1(xy)
tan(α+β)=tan(α)+tan(β)1−tan(α)tan(β)
https://www.alanshawn.com/latex3-tutorial/#latex3-regular-expression-xxviii
\regex_replace_all
https://tex.stackexchange.com/questions/422631/expl3-regex-and-missing-semicolon
\documentclass{article}
\usepackage{tikz,xparse}
\ExplSyntaxOn
\tl_new:N \l_bob_func_tl
\NewDocumentCommand \makelinesegment { m }
{
\pgfextra
\tl_set:Nn \l_bob_func_tl { #1 }
\regex_replace_all:nnN { ([0-9])- } { \1)--( } \l_bob_func_tl
\regex_replace_all:nnN { : } { , } \l_bob_func_tl
\exp_last_unbraced:NNV % this is not necessary, but I find it cleaner, correct me if I'm wrong
\endpgfextra
(\l_bob_func_tl)
}
\ExplSyntaxOff
\begin{document}
% \makelinesegment{1:1--1:2-2:2} % do not use outside `\tikz` or `{tikzpicture}`
\tikz\draw\makelinesegment{1:1--1:2-2:2};
\end{document}
https://stackoverflow.com/questions/41655383/r-markdown-similar-feature-to-newcommand-in-latex
Var(X)
Var[Y]=x=3
0=∂∂zl(‖h(zl−1)⋅wl−zl‖+λ‖h(zl)⋅wl+1−zl+1‖)
https://tex.stackexchange.com/questions/353114/latex-equations-colour-all-instances-of-symbol
0=∂∂\ensuremathzl(‖h(zl−1)⋅wl−\ensuremathzl‖+λ‖h(\ensuremathzl)⋅wl+1−zl+1‖)
0=∂∂zl(‖h(zl−1)⋅wl−zl‖+λ‖h(zl)⋅wl+1−zl+1‖)
\require{color} \begin{aligned} 0\le\epsilon=\dfrac{\overline{PF}}{d\left(P,L\right)}=\dfrac{\overline{PF}}{\overline{PP^{\prime}}}= & \dfrac{\left\Vert \left(x,y\right)-\left(0,y_{{\scriptscriptstyle F}}\right)\right\Vert }{\left\Vert \left(x,y\right)-\left(x,y_{{\scriptscriptstyle L}}\right)\right\Vert }=\dfrac{\left\Vert \left(x,y-y_{{\scriptscriptstyle F}}\right)\right\Vert }{\left\Vert \left(0,y-y_{{\scriptscriptstyle L}}\right)\right\Vert }=\dfrac{\sqrt{x^{2}+\left(y-y_{{\scriptscriptstyle F}}\right)^{2}}}{\sqrt{\left(y-y_{{\scriptscriptstyle L}}\right)^{2}}}\\ \epsilon^{2}= & \dfrac{x^{2}+\left(y-y_{{\scriptscriptstyle F}}\right)^{2}}{\left(y-y_{{\scriptscriptstyle L}}\right)^{2}}=\dfrac{x^{2}+y^{2}-2y_{{\scriptscriptstyle F}}y+y_{{\scriptscriptstyle F}}^{2}}{y^{2}-2y_{{\scriptscriptstyle L}}y+y_{{\scriptscriptstyle L}}^{2}}\\ 0= & x^{2}+\left(1-\epsilon^{2}\right)y^{2}-2\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)y+\left(y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}\right)\\ \overset{\epsilon\ne1}{=} & x^{2}+\left(1-\epsilon^{2}\right)\left[y^{2}-\dfrac{2\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)}{1-\epsilon^{2}}y+\dfrac{y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}}{1-\epsilon^{2}}\right]\\ = & x^{2}+\left(1-\epsilon^{2}\right)\\ & \left[y^{2}-\dfrac{2\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)}{1-\epsilon^{2}}y+\left(\dfrac{y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}}{1-\epsilon^{2}}\right)^{2}-\left(\dfrac{y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}}{1-\epsilon^{2}}\right)^{2}+\dfrac{y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}}{1-\epsilon^{2}}\right]\\ = & x^{2}+\left(1-\epsilon^{2}\right)\left[\left(y-\dfrac{y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}}{1-\epsilon^{2}}\right)^{2}+\dfrac{\left(y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}\right)\left(1-\epsilon^{2}\right)-\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)^{2}}{\left(1-\epsilon^{2}\right)^{2}}\right]\\ = & x^{2}+\left(1-\epsilon^{2}\right)\left(y-\dfrac{y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}}{1-\epsilon^{2}}\right)^{2}+\dfrac{\left(y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}\right)\left(1-\epsilon^{2}\right)-\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)^{2}}{1-\epsilon^{2}} \end{aligned}
\require{color} \begin{aligned} & \left(y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}\right)\left(1-\epsilon^{2}\right)-\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)^{2}\\ = & \left(1-\epsilon^{2}\right)y_{{\scriptscriptstyle F}}^{2}-\left(\epsilon^{2}-\epsilon^{4}\right)y_{{\scriptscriptstyle L}}^{2}-y_{{\scriptscriptstyle F}}^{2}+2\epsilon^{2}y_{{\scriptscriptstyle F}}y_{{\scriptscriptstyle L}}-\epsilon^{4}y_{{\scriptscriptstyle L}}^{2}\\ = & -\epsilon^{2}y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}+2\epsilon^{2}y_{{\scriptscriptstyle F}}y_{{\scriptscriptstyle L}}=-\epsilon^{2}\left(y_{{\scriptscriptstyle F}}-y_{{\scriptscriptstyle L}}\right)^{2} \end{aligned}
\require{color} \begin{aligned} 0\le\epsilon=\dfrac{\overline{PF}}{d\left(P,L\right)}=\dfrac{\overline{PF}}{\overline{PP^{\prime}}}= & \dfrac{\left\Vert \left(x,y\right)-\left(0,y_{{\scriptscriptstyle F}}\right)\right\Vert }{\left\Vert \left(x,y\right)-\left(x,y_{{\scriptscriptstyle L}}\right)\right\Vert }=\dfrac{\left\Vert \left(x,y-y_{{\scriptscriptstyle F}}\right)\right\Vert }{\left\Vert \left(0,y-y_{{\scriptscriptstyle L}}\right)\right\Vert }=\dfrac{\sqrt{x^{2}+\left(y-y_{{\scriptscriptstyle F}}\right)^{2}}}{\sqrt{\left(y-y_{{\scriptscriptstyle L}}\right)^{2}}}\\ \epsilon^{2}= & \dfrac{x^{2}+\left(y-y_{{\scriptscriptstyle F}}\right)^{2}}{\left(y-y_{{\scriptscriptstyle L}}\right)^{2}}=\dfrac{x^{2}+y^{2}-2y_{{\scriptscriptstyle F}}y+y_{{\scriptscriptstyle F}}^{2}}{y^{2}-2y_{{\scriptscriptstyle L}}y+y_{{\scriptscriptstyle L}}^{2}}\\ 0= & x^{2}+\left(1-\epsilon^{2}\right)y^{2}-2\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)y+\left(y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}\right)\\ \overset{\epsilon\ne1}{=} & x^{2}+\left(1-\epsilon^{2}\right)\left[y^{2}-\dfrac{2\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)}{1-\epsilon^{2}}y+\dfrac{y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}}{1-\epsilon^{2}}\right]\\ = & x^{2}+\left(1-\epsilon^{2}\right)\\ & \left[y^{2}-\dfrac{2\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)}{1-\epsilon^{2}}y+\left(\dfrac{y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}}{1-\epsilon^{2}}\right)^{2}-\left(\dfrac{y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}}{1-\epsilon^{2}}\right)^{2}+\dfrac{y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}}{1-\epsilon^{2}}\right]\\ = & x^{2}+\left(1-\epsilon^{2}\right)\left[\left(y-\dfrac{y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}}{1-\epsilon^{2}}\right)^{2}+\dfrac{\colorbox{#FFFF66}{$\left(y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}\right)\left(1-\epsilon^{2}\right)-\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)^{2}$}}{\left(1-\epsilon^{2}\right)^{2}}\right]\\ = & x^{2}+\left(1-\epsilon^{2}\right)\left(y-\dfrac{y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}}{1-\epsilon^{2}}\right)^{2}+\dfrac{\colorbox{#FFFF66}{$\left(y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}\right)\left(1-\epsilon^{2}\right)-\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)^{2}$}}{1-\epsilon^{2}} \end{aligned}
\require{color} \begin{aligned} & \colorbox{#FFFF66}{$\left(y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}\right)\left(1-\epsilon^{2}\right)-\left(y_{{\scriptscriptstyle F}}-\epsilon^{2}y_{{\scriptscriptstyle L}}\right)^{2}$} \\ = & \left(1-\epsilon^{2}\right)y_{{\scriptscriptstyle F}}^{2}-\left(\epsilon^{2}-\epsilon^{4}\right)y_{{\scriptscriptstyle L}}^{2}-y_{{\scriptscriptstyle F}}^{2}+2\epsilon^{2}y_{{\scriptscriptstyle F}}y_{{\scriptscriptstyle L}}-\epsilon^{4}y_{{\scriptscriptstyle L}}^{2}\\ = & -\epsilon^{2}y_{{\scriptscriptstyle F}}^{2}-\epsilon^{2}y_{{\scriptscriptstyle L}}^{2}+2\epsilon^{2}y_{{\scriptscriptstyle F}}y_{{\scriptscriptstyle L}}=-\epsilon^{2}\left(y_{{\scriptscriptstyle F}}-y_{{\scriptscriptstyle L}}\right)^{2} \end{aligned}