Chapter 40: group theory

https://www.bilibili.com/video/BV1hm4y1v75R

https://en.wikipedia.org/wiki/Group_(mathematics)

40.1 matrix group

subset of two-by-two matrices at least excluding zero matrix

M=(M,)(M2×2(C){0},)=M2×2(C){(0000)}

matrix multiplication

M1,M2M2,M1M2M[M1M2=M1M2]:M×M=M2M:M×MMM×MMM2M

matrix group

{M1,M2,M3M3[M1(M2M3)=(M1M2)M3]associativityI=I2=(1001)M,MM[IM=M]left unit elementMM,M1M[M1M=I]left inverse (element)M=(M,) is a matrix group

40.2 group definition and basic theorem

https://en.wikipedia.org/wiki/Group_(mathematics)#Elementary_consequences_of_the_group_axioms

Definition 40.1 (group) group definition by a set and a binary operation on the set

{:G×G=G2Gbinary operationg1,g2,g3G3[g1(g2g3)=(g1g2)g3]associativitye=∈G,gG[eg=g]left unit elementgG,g1G[g1g=e]left inverse (element)G=(G,) is a group

Theorem 40.1 group left inverses equal right inverses

 

Proof:

to be proved

40.6 Polya enumeration theorem

https://www.bilibili.com/video/BV17s4y1R7fW

40.7 complex group representation

40.7.1 complex basis group

G={1,i,1,i}={i0,i1,i2,i3}

g1,g2G2,g1g2G[g1g2=g1g2]:G×G=G2G

https://tex.stackexchange.com/questions/627708/tikz-how-to-put-tables-within-arbitrarily-placed-nodes

complex basis group table

Fig. 17.1: complex basis group table

40.7.2 CM2×2(R)

1(1001)=I2=I

c1(1001)+c2(abcd)=x(1001)+y(abcd),a,b,c,dR4=xI+yJ,J=(abcd)M2×2(R),x,yR2


J2=I


J2=I(a2+bcab+bdca+cdcb+d2)=(abcd)(abcd)=(1001)=(1001){a2+bc=1b=0a2=1⇒⇐aRb0ab+bd=0(b=0)(a=d)b0a=dca+cd=0cb+d2=1a2=d2(a=d)(a=d)if a=d{a=da=da=d=0bc=1 J=(abcd)=(aba21ba)=J(a,b),b0

J(a,b)=(aba21ba),b0


J(a=1,b)=(1b2b1)J2(a=1,b)=(1001)=I

xI+yJ(a=1,b)=(x+yyby2bxy)


J(a=0,b)=(0b1b0)


J(a=0,b=1)=(0110)


J(a=0,b=1)=(0110)=(0110)=J(a=0,b=1)J2(a=0,b=1)=(0110)(0110)=(1001)=I

J=J(a=0,b=1)=(0110){1I=(1001)iJ=(0110)x+yixI+yJ=x(1001)+y(0110)=(xyyx)


x+yi(xyyx)=xI+yJ

realizing

CM2×2(R)=M2(R)

40.7.3 ( determinant of complex group representation ) equivalent to ( squared modulus of complex number )

det(xI+yJ)=det(xyyx)=|xyyx|=x2+y2=|x+yi|2

40.7.3.1 Lagrange identity

cf. Euler identity[40.8.1.1]

det[(aI+bJ)(cI+dJ)]=det[(abba)(cddc)]=det(acbdadbcad+bcacbd)=|(acbd)+(ad+bc)i|2=(acbd)2+(ad+bc)2=[det(abba)][det(cddc)]=|a+bi|2|c+di|2=(a2+b2)(c2+d2)

|a+bi|2|c+di|2=(a2+b2)(c2+d2)=(acbd)2+(ad+bc)2

det[(x1I+y1J)(x2I+y2J)]=det[(x1y1y1x1)(x2y2y2x2)]=det(x1x2y1y2x1y2y1x2x1y2+y1x2x1x2y1y2)=|(x1x2y1y2)+(x1y2+y1x2)i|2=(x1x2y1y2)2+(x1y2+y1x2)2=[det(x1y1y1x1)][det(x2y2y2x2)]=|x1+y1i|2|x2+y2i|2=(x21+y21)(x22+y22)

|x1+y1i|2|x2+y2i|2=(x21+y21)(x22+y22)=(x1x2y1y2)2+(x1y2+y1x2)2

40.7.4 Euler formula proved by complex group representation

https://www.bilibili.com/video/BV1mM4y1J79a

(xy)=(cosθsinθsinθcosθ)(xy)=Rθ(xy)=(cosnθnsinnθnsinnθncosnθn)(xy)=(cosθnsinθnsinθncosθn)n(xy)=Rnθn(xy)

limnRθn=limn(cosθnsinθnsinθncosθn)=(1θnθn1)=(1001)+θn(0110)=(1001)+θn(cosπ2sinπ2sinπ2cosπ2)=I+θnRπ2


limnRθn=limn(cosθnsinθnsinθncosθn)=(1θnθn1)=I+θnRπ2


(xy)=limn(xy)=limnRnθn(xy)=[limnRnθn][limn(xy)]=[limnRnθn](xy)=limn[limnRθn]n(xy)=limn[I+θnRπ2]n(xy)=limn[I+θn(0110)]n(xy)=limn[I+θJn]n(xy),J=(0110)=eJθ(xy)

{(xy)=(cosθsinθsinθcosθ)(xy)(xy)=eJθ(xy)eJθ=(cosθsinθsinθcosθ)x+yi(xyyx)=xI+yJeiθ=cosθ+isinθ

 

40.8 quaternion group representation

https://groupprops.subwiki.org/wiki/Linear_representation_theory_of_quaternion_group#Two-dimensional_irreducible_representation_over_a_splitting_field

q=a+bi+cj+dk=a+ib+jc+kd,{qHa,b,c,dRa,b,c,dR4=w=t+xi+yj+zk=t+ix+jy+kz,{wHt,x,y,zRt,x,y,zR4=a1+bi+cj+dk=t1+xi+yj+zk=x01+eixi

40.8.1 HM2×2(C)

1=(1001)=12=1

e=(abcd)=(aba21ba)={(aba21ba)=(0b1b0)=(0ββ0)e2=J=(0110)=ja=0(aba21ba)=(αββα)a0

(α2+β200β2+α2)=(αββα)(αββα)=e2=1=(1001)=(1001)α2+β2=1β2+α2=1

α2+β2=1α,βR2⇒⇐α,βR2α2+β20

quaternion group has no irreducible two-dimensional representation over the reals 11

α,βC2R2

α2+β2=1=β2+α2

(βααβ)(βααβ)=(β2+α200α2+β2)=(1001)=(1001)=1

1=(1001),e1=(αββα),e2=(0110)

1=(1001),i=(αββα),j=(0110)

ij=(αββα)(0110)=(βααβ)=k

1=(1001),e1=(αββα),e2=(0110),e3=(βααβ) 1=(1001),i=(αββα),j=(0110),k=(βααβ)

jk=(0110)(βααβ)=(αββα)=i


α2+β2=1{α=1β=0{α=2β=1β=α2,n{1,2,4,5}1(1001)(1001)(1001)(1001)1(1001)(1001)(1001)(1001)i(αββα)(1001)(2112)(eπn31eπ2n31eπ2n31eπn31)i(αββα)(1001)(2112)(eπn31eπ2n31eπ2n31eπn31)j(0110)(0110)(0110)(0110)j(0110)(0110)(0110)(0110)k(βααβ)(0110)(1221)(eπ2n31eπn31eπn31eπ2n31)k(βααβ)(0110)(1221)(eπ2n31eπn31eπn31eπ2n31)


1=α2+β2β=α2=α2+α4α4+α2+1=0,α4+α2+1=(α2+α+1)(α2α+1)(α21)(α4+α2+1)=0α61=0α6=1=e2πk1,kZα=e2πn61,n{0,1,2,3,4,5}{0,3}=eπn31,n{1,2,4,5}


α2+β2=1{α=iβ=0{α=2iβ=1ω=eiπn3,n{1,2,4,5}1(1001)(1001)(1001)(1001)1(1001)(1001)(1001)(1001)i(αββα)(i00i)(2i112i)(ωω2ω2ω)i(αββα)(i00i)(2i112i)(ωω2ω2ω)j(0110)(0110)(0110)(0110)j(0110)(0110)(0110)(0110)k(βααβ)(0ii0)(12i2i1)(ω2ωωω2)k(βααβ)(0ii0)(12i2i1)(ω2ωωω2)

realizing

HM2×2(C)=M2(C)

40.8.1.1 Euler identity

cf. Lagrange identity[40.7.3.1]

det(a+bi+cj+dk)=det[a(1001)+b(i00i)+c(0110)+d(0ii0)]=det(a+bicdicdiabi)=|a+bicdicdiabi|=(a2+b2)+(c2+d2)=a2+b2+c2+d2

det(a+bi+cj+dk)=det(a+bicdicdiabi)=a2+b2+c2+d2

det[(q10+q11i+q12j+q13k)(q20+q21i+q22j+q23k)]=det[(a+bi+cj+dk)(α+βi+γj+δk)]=det{[q10(1001)+q11(i00i)+q12(0110)+q13(0ii0)][q20(1001)+q21(i00i)+q22(0110)+q23(0ii0)]}=det{[a(1001)+b(i00i)+c(0110)+d(0ii0)][α(1001)+β(i00i)+γ(0110)+δ(0ii0)]}=det{(a+bicdicdiabi)(α+βiγδiγδiαβi)}=det(a+bicdicdiabi)det(α+βiγδiγδiαβi)=(a2+b2+c2+d2)(α2+β2+γ2+δ2)=det{([a+bi][α+βi][c+di][γδi][a+bi][γδi][c+di][αβi][cdi][α+βi]+[abi][γδi][cdi][γδi]+[abi][αβi])}=det{((aαbβcγdδ)+i(aβ+bα+cδdγ)(aγbδ+cα+dβ)i(aδ+bγcβ+dα)(aγbδ+cα+dβ)i(aδ+bγcβ+dα)(aαbβcγdδ)i(aβ+bα+cδdγ))}=det{(aαbβcγdδ)+(aβ+bα+cδdγ)i+(aγbδ+cα+dβ)j+(aδ+bγcβ+dα)k}=(aαbβcγdδ)2+(aβ+bα+cδdγ)2+(aγbδ+cα+dβ)2+(aδ+bγcβ+dα)2=(q10q20q11q21q12q22q13q23)2+(q10q21+q11q20+q12q23q13q22)2+(q10q22q11q23+q12q20+q13q21)2+(q10q23+q11q22q12q21+q13q20)2

(a2+b2+c2+d2)(α2+β2+γ2+δ2)=(aαbβcγdδ)2+(aβ+bα+cδdγ)2+(aγbδ+cα+dβ)2+(aδ+bγcβ+dα)2


Theorem 26.2 For any two integers greater than zero, their multiplication can be the summation of squared four integers greater than zero.

m1,m2(N{0})2,k1,k2,k3,k4(N{0})4[m1m2=k21+k22+k23+k24]

Proof:

Let {m1=a2+b2+c2+d2a,b,c,d(N{0})4m2=α2+β2+γ2+δ2α,β,γ,δ(N{0})4closure property(m1m2)=(a2+b2+c2+d2α2+β2+γ2+δ2)(N{0})2,

m1m2=(a2+b2+c2+d2)(α2+β2+γ2+δ2)Euler identity=(aαbβcγdδ)2+(aβ+bα+cδdγ)2+(aγbδ+cα+dβ)2+(aδ+bγcβ+dα)2=|aαbβcγdδ|2+|aβ+bα+cδdγ|2+|aγbδ+cα+dβ|2+|aδ+bγcβ+dα|2=k21+k22+k23+k24,(k1k2k3k4)=(|aαbβcγdδ||aβ+bα+cδdγ||aγbδ+cα+dβ||aδ+bγcβ+dα|)(N{0})4

{a,b,c,d(N{0})4α,β,γ,δ(N{0})4closure property(|aαbβcγdδ||aβ+bα+cδdγ||aγbδ+cα+dβ||aδ+bγcβ+dα|)(N{0})4  

40.8.2 HM4×4(R)

https://groupprops.subwiki.org/wiki/Linear_representation_theory_of_quaternion_group#Four-dimensional_irreducible_representation_over_a_non-splitting_field

HM2(C)CM2(R)M4×4(R)=M4(R)

CM2(R){1(1001)i(0110)


1(1001)((1001)(0000)(0000)(1001))(1000010000100001)

1(1001)((1001)(0000)(0000)(1001))(1000010000100001)

i(i00i)((0110)(0000)(0000)(0110))(0100100000010010)

i(i00i)((0110)(0000)(0000)(0110))(0100100000010010)

j(0110)((0000)(1001)(1001)(0000))(0010000110000100)

j(0110)((0000)(1001)(1001)(0000))(0010000110000100)

k(0ii0)((0000)(0110)(0110)(0000))(0001001001001000)

k(0ii0)((0000)(0110)(0110)(0000))(0001001001001000)


some examinations

ij(0100100000010010)(0010000110000100)=(0001001001001000)k

ji(0010000110000100)(0100100000010010)=(0001001001001000)k

i2=ii(0100100000010010)(0100100000010010)=(1000010000100001)1


{α=iβ=0{1(1001)i(0110){α=2iβ=1{1(1001)i(0110)1(1001)(1000010000100001)(1001)(1000010000100001)1(1001)(1000010000100001)(1001)(1000010000100001)i(i00i)(0100100000010010)(2i112i)(0210200110020120)i(i00i)(0100100000010010)(2i112i)(0110100110010110)j(0110)(0010000110000100)(0110)(0010000110000100)j(0110)(0010000110000100)(0110)(0010000110000100)k(0ii0)(0001001001001000)(12i2i1)(1002012002102001)k(0ii0)(0001001001001000)(12i2i1)(1002012002102001)


some examinations

ij(0210200110020120)(0010000110000100)=(1002012002102001)k