Chapter 40: group theory
https://www.bilibili.com/video/BV1hm4y1v75R
https://en.wikipedia.org/wiki/Group_(mathematics)
40.1 matrix group
subset of two-by-two matrices at least excluding zero matrix
M=(M,⋅)⊂(M2×2(C)−{0},⋅)=M2×2(C)−{(0000)}
matrix multiplication
∀⟨M1,M2⟩∈M2,∃M1M2∈M[M1M2=M1⋅M2]⇔⋅:M×M=M2→M⇔⋅:M×M→M⇔M×M⋅→M⇔M2⋅→M
matrix group
{∀⟨M1,M2,M3⟩∈M3[M1(M2M3)=(M1M2)M3]associativity∃I=I2=(1001)∈M,∀M∈M[IM=M]left unit element∀M∈M,∃M−1∈M[M−1M=I]left inverse (element)⇒M=(M,⋅) is a matrix group
40.2 group definition and basic theorem
https://en.wikipedia.org/wiki/Group_(mathematics)#Elementary_consequences_of_the_group_axioms
Definition 40.1 (group) group definition by a set and a binary operation on the set
{∘:G×G=G2→Gbinary operation∀⟨g1,g2,g3⟩∈G3[g1∘(g2∘g3)=(g1∘g2)∘g3]associativity∃e=∈G,∀g∈G[e∘g=g]left unit element∀g∈G,∃g−1∈G[g−1∘g=e]left inverse (element)⇔G=(G,∘) is a group
Theorem 40.1 group left inverses equal right inverses
Proof:
to be proved
40.3 EpicOrganism = AIRoswell = Pan, Yi-Wen10
https://space.bilibili.com/14316464/video
https://space.bilibili.com/14316464/channel/collectiondetail?sid=1768137
https://www.bilibili.com/video/BV1mC4y1Z78k
https://www.bilibili.com/video/BV1Sp4y1w76M
https://www.bilibili.com/video/BV1cc411o7Hc
https://www.bilibili.com/video/BV1d8411v7t9
https://www.bilibili.com/video/BV1Rw411e7km
https://www.bilibili.com/video/BV1Q84y127ZQ
https://www.bilibili.com/video/BV1hm4y1g7A9
https://www.bilibili.com/video/BV1s94y1L7MU
https://www.bilibili.com/video/BV1j84y1d7eY
https://www.bilibili.com/video/BV18z4y1P7oB
https://www.bilibili.com/video/BV1cN4y1m77z
https://www.bilibili.com/video/BV18N4y1a7a3
https://www.bilibili.com/video/BV1Ma4y1r7nT
https://www.bilibili.com/video/BV11N4y187QW
40.7 complex group representation
40.7.1 complex basis group
G={1,i,−1,−i}={i0,i1,i2,i3}
∀⟨g1,g2⟩∈G2,∃g1g2∈G[g1g2=g1⋅g2]⇔⋅:G×G=G2→G

Fig. 17.1: complex basis group table
40.7.2 C→M2×2(R)
1↔(1001)=I2=I
c1(1001)+c2(abcd)=x(1001)+y(abcd),⟨a,b,c,d⟩∈R4=xI+yJ,J=(abcd)∈M2×2(R),⟨x,y⟩∈R2
J2=−I
J2=−I(a2+bcab+bdca+cdcb+d2)=(abcd)(abcd)=−(1001)=(−100−1){a2+bc=−1b=0⇒a2=−1⇒⇐a∈R⇒b≠0ab+bd=0(b=0)∨(a=−d)b≠0⇒a=−dca+cd=0cb+d2=−1a2=d2⇒(a=d)∨(a=−d)if a=d⇒{a=da=−d⇒a=d=0⇒bc=−1 J=(abcd)=(ab−a2−1b−a)=J(a,b),b≠0
J(a,b)=(ab−a2−1b−a),b≠0
J(a=1,b)=(1b−2b−1)⇒J2(a=1,b)=(−100−1)=−I
xI+yJ(a=1,b)=(x+yyby⋅−2bx−y)
J(a=0,b)=(0b−1b0)
J(a=0,b=1)=(01−10)
J(a=0,b=−1)=(0−110)=−(01−10)=−J(a=0,b=1)⇒J2(a=0,b=−1)=(0−110)(0−110)=(−100−1)=−I
J=J(a=0,b=−1)=(0−110)⇒{1↔I=(1001)i↔J=(0−110)⇒x+yi↔xI+yJ=x(1001)+y(0−110)=(x−yyx)
x+yi↔(x−yyx)=xI+yJ
realizing
C→M2×2(R)=M2(R)
40.7.3 ( determinant of complex group representation ) equivalent to ( squared modulus of complex number )
det(xI+yJ)=det(x−yyx)=|x−yyx|=x2+y2=|x+yi|2
40.7.3.1 Lagrange identity
https://en.wikipedia.org/wiki/Lagrange's_identity
generalization of Brahmagupta–Fibonacci identity
specialization of Binet–Cauchy identity
cf. Euler identity[40.8.1.1]
det[(aI+bJ)(cI+dJ)]=det[(a−bba)(c−ddc)]=det(ac−bd−ad−bcad+bcac−bd)=|(ac−bd)+(ad+bc)i|2=(ac−bd)2+(ad+bc)2=[det(a−bba)][det(c−ddc)]=|a+bi|2|c+di|2=(a2+b2)(c2+d2)
|a+bi|2|c+di|2=(a2+b2)(c2+d2)=(ac−bd)2+(ad+bc)2
det[(x1I+y1J)(x2I+y2J)]=det[(x1−y1y1x1)(x2−y2y2x2)]=det(x1x2−y1y2−x1y2−y1x2x1y2+y1x2x1x2−y1y2)=|(x1x2−y1y2)+(x1y2+y1x2)i|2=(x1x2−y1y2)2+(x1y2+y1x2)2=[det(x1−y1y1x1)][det(x2−y2y2x2)]=|x1+y1i|2|x2+y2i|2=(x21+y21)(x22+y22)
|x1+y1i|2|x2+y2i|2=(x21+y21)(x22+y22)=(x1x2−y1y2)2+(x1y2+y1x2)2
40.7.4 Euler formula proved by complex group representation
https://www.bilibili.com/video/BV1mM4y1J79a
(x′y′)=(cosθ−sinθsinθcosθ)(xy)=Rθ(xy)=(cosnθn−sinnθnsinnθncosnθn)(xy)=(cosθn−sinθnsinθncosθn)n(xy)=Rnθn(xy)
limn→∞Rθn=limn→∞(cosθn−sinθnsinθncosθn)=(1−θnθn1)=(1001)+θn(0−110)=(1001)+θn(cosπ2−sinπ2sinπ2cosπ2)=I+θnRπ2
limn→∞Rθn=limn→∞(cosθn−sinθnsinθncosθn)=(1−θnθn1)=I+θnRπ2
(x′y′)=limn→∞(x′y′)=limn→∞Rnθn(xy)=[limn→∞Rnθn][limn→∞(xy)]=[limn→∞Rnθn](xy)=limn→∞[limn→∞Rθn]n(xy)=limn→∞[I+θnRπ2]n(xy)=limn→∞[I+θn(0−110)]n(xy)=limn→∞[I+θJn]n(xy),J=(0−110)=eJθ(xy)
{(x′y′)=(cosθ−sinθsinθcosθ)(xy)(x′y′)=eJθ(xy)⇒eJθ=(cosθ−sinθsinθcosθ)x+yi↔(x−yyx)=xI+yJ⇒eiθ=cosθ+isinθ
40.8 quaternion group representation
q=a+bi+cj+dk=a+ib+jc+kd,{q∈Ha,b,c,d∈R⇔⟨a,b,c,d⟩∈R4=w=t+xi+yj+zk=t+ix+jy+kz,{w∈Ht,x,y,z∈R⇔⟨t,x,y,z⟩∈R4=a1+bi+cj+dk=t1+xi+yj+zk=x01+eixi
40.8.1 H→M2×2(C)
1=(1001)=12=1
e=(abcd)=(ab−a2−1b−a)={(ab−a2−1b−a)=(0b−1b0)=(0β−β0)⇒e2=J=(0−110)=ja=0(ab−a2−1b−a)=(αββ−α)a≠0
(α2+β200β2+α2)=(αββ−α)(αββ−α)=e2=−1=−(1001)=(−100−1)⇓α2+β2=−1⇔β2+α2=−1
α2+β2=−1⇒⟨α,β⟩∉R2⇒⇐⟨α,β⟩∈R2⇒α2+β2≥0
quaternion group has no irreducible two-dimensional representation over the reals 11
⟨α,β⟩∈C2−R2
α2+β2=−1=β2+α2
(βαα−β)(βαα−β)=(β2+α200α2+β2)=(−100−1)=−(1001)=−1
1=(1001),e1=(αββ−α),e2=(0−110)
1=(1001),i=(αββ−α),j=(0−110)
ij=(αββ−α)(0−110)=(β−α−α−β)=k
1=(1001),e1=(αββ−α),e2=(0−110),e3=(β−α−α−β) 1=(1001),i=(αββ−α),j=(0−110),k=(β−α−α−β)
jk=(0−110)(β−α−α−β)=(αββ−α)=i
α2+β2=−1{α=√−1β=0{α=√−2β=1β=α2,n∈{1,2,4,5}1(1001)(1001)(1001)(1001)−1(−100−1)(−100−1)(−100−1)(−100−1)i(αββ−α)(√−100−√−1)(√−211−√−2)(eπn3√−1eπ2n3√−1eπ2n3√−1−eπn3√−1)−i(−α−β−βα)(−√−100√−1)(−√−2−1−1√−2)(−eπn3√−1−eπ2n3√−1−eπ2n3√−1eπn3√−1)j(0−110)(0−110)(0−110)(0−110)−j(01−10)(01−10)(01−10)(01−10)k(β−α−α−β)(0−√−1−√−10)(1−√−2−√−2−1)(eπ2n3√−1−eπn3√−1−eπn3√−1−eπ2n3√−1)−k(−βααβ)(0√−1√−10)(−1√−2√−21)(−eπ2n3√−1eπn3√−1eπn3√−1eπ2n3√−1)
−1=α2+β2β=α2=α2+α4α4+α2+1=0,α4+α2+1=(α2+α+1)(α2−α+1)(α2−1)(α4+α2+1)=0α6−1=0α6=1=e2πk√−1,k∈Zα=e2πn6√−1,n∈{0,1,2,3,4,5}−{0,3}=eπn3√−1,n∈{1,2,4,5}
α2+β2=−1{α=iβ=0{α=√2iβ=1ω=eiπn3,n∈{1,2,4,5}1(1001)(1001)(1001)(1001)−1(−100−1)(−100−1)(−100−1)(−100−1)i(αββ−α)(i00−i)(√2i11−√2i)(ωω2ω2−ω)−i(−α−β−βα)(−i00i)(−√2i−1−1√2i)(−ω−ω2−ω2ω)j(0−110)(0−110)(0−110)(0−110)−j(01−10)(01−10)(01−10)(01−10)k(β−α−α−β)(0−i−i0)(1−√2i−√2i−1)(ω2−ω−ω−ω2)−k(−βααβ)(0ii0)(−1√2i√2i1)(−ω2ωωω2)
realizing
H→M2×2(C)=M2(C)
40.8.1.1 Euler identity
cf. Lagrange identity[40.7.3.1]
det(a+bi+cj+dk)=det[a(1001)+b(i00−i)+c(0−110)+d(0−i−i0)]=det(a+bi−c−dic−dia−bi)=|a+bi−c−dic−dia−bi|=(a2+b2)+(c2+d2)=a2+b2+c2+d2
det(a+bi+cj+dk)=det(a+bi−c−dic−dia−bi)=a2+b2+c2+d2
det[(q10+q11i+q12j+q13k)(q20+q21i+q22j+q23k)]=det[(a+bi+cj+dk)(α+βi+γj+δk)]=det{[q10(1001)+q11(i00−i)+q12(0−110)+q13(0−i−i0)][q20(1001)+q21(i00−i)+q22(0−110)+q23(0−i−i0)]}=det{[a(1001)+b(i00−i)+c(0−110)+d(0−i−i0)][α(1001)+β(i00−i)+γ(0−110)+δ(0−i−i0)]}=det{(a+bi−c−dic−dia−bi)(α+βi−γ−δiγ−δiα−βi)}=det(a+bi−c−dic−dia−bi)det(α+βi−γ−δiγ−δiα−βi)=(a2+b2+c2+d2)(α2+β2+γ2+δ2)=det{([a+bi][α+βi]−[c+di][γ−δi][a+bi][−γ−δi]−[c+di][α−βi][c−di][α+βi]+[a−bi][γ−δi][c−di][−γ−δi]+[a−bi][α−βi])}=det{((aα−bβ−cγ−dδ)+i(aβ+bα+cδ−dγ)−(aγ−bδ+cα+dβ)−i(aδ+bγ−cβ+dα)(aγ−bδ+cα+dβ)−i(aδ+bγ−cβ+dα)(aα−bβ−cγ−dδ)−i(aβ+bα+cδ−dγ))}=det{(aα−bβ−cγ−dδ)+(aβ+bα+cδ−dγ)i+(aγ−bδ+cα+dβ)j+(aδ+bγ−cβ+dα)k}=(aα−bβ−cγ−dδ)2+(aβ+bα+cδ−dγ)2+(aγ−bδ+cα+dβ)2+(aδ+bγ−cβ+dα)2=(q10q20−q11q21−q12q22−q13q23)2+(q10q21+q11q20+q12q23−q13q22)2+(q10q22−q11q23+q12q20+q13q21)2+(q10q23+q11q22−q12q21+q13q20)2
(a2+b2+c2+d2)(α2+β2+γ2+δ2)=(aα−bβ−cγ−dδ)2+(aβ+bα+cδ−dγ)2+(aγ−bδ+cα+dβ)2+(aδ+bγ−cβ+dα)2
Theorem 26.2 For any two integers greater than zero, their multiplication can be the summation of squared four integers greater than zero.
∀⟨m1,m2⟩∈(N∪{0})2,∃⟨k1,k2,k3,k4⟩∈(N∪{0})4[m1m2=k21+k22+k23+k24]
Proof:
Let {m1=a2+b2+c2+d2⟨a,b,c,d⟩∈(N∪{0})4m2=α2+β2+γ2+δ2⟨α,β,γ,δ⟩∈(N∪{0})4closure property⇒(m1m2)=(a2+b2+c2+d2α2+β2+γ2+δ2)∈(N∪{0})2,
m1m2=(a2+b2+c2+d2)(α2+β2+γ2+δ2)Euler identity=(aα−bβ−cγ−dδ)2+(aβ+bα+cδ−dγ)2+(aγ−bδ+cα+dβ)2+(aδ+bγ−cβ+dα)2=|aα−bβ−cγ−dδ|2+|aβ+bα+cδ−dγ|2+|aγ−bδ+cα+dβ|2+|aδ+bγ−cβ+dα|2=k21+k22+k23+k24,(k1k2k3k4)=(|aα−bβ−cγ−dδ||aβ+bα+cδ−dγ||aγ−bδ+cα+dβ||aδ+bγ−cβ+dα|)∈(N∪{0})4
∵{⟨a,b,c,d⟩∈(N∪{0})4⟨α,β,γ,δ⟩∈(N∪{0})4closure property⇒(|aα−bβ−cγ−dδ||aβ+bα+cδ−dγ||aγ−bδ+cα+dβ||aδ+bγ−cβ+dα|)∈(N∪{0})4
40.8.2 H→M4×4(R)
H→M2(C)C→M2(R)→M4×4(R)=M4(R)
C→M2(R)⇐{1→(1001)i→(0−110)
1→(1001)→((1001)(0000)(0000)(1001))→(1000010000100001)
−1→(−100−1)→((−100−1)(0000)(0000)(−100−1))→(−10000−10000−10000−1)
i→(i00−i)→((0−110)(0000)(0000)(01−10))→(0−1001000000100−10)
−i→(−i00i)→((01−10)(0000)(0000)(0−110))→(0100−1000000−10010)
j→(0−110)→((0000)(−100−1)(1001)(0000))→(00−10000−110000100)
−j→(01−10)→((0000)(1001)(−100−1)(0000))→(00100001−10000−100)
k→(0−i−i0)→((0000)(01−10)(01−10)(0000))→(000100−100100−1000)
−k→(0ii0)→((0000)(0−110)(0−110)(0000))→(000−100100−1001000)
some examinations
ij→(0−1001000000100−10)(00−10000−110000100)=(000100−100100−1000)←k
ji→(00−10000−110000100)(0−1001000000100−10)=(000−100100−1001000)←−k
i2=ii→(0−1001000000100−10)(0−1001000000100−10)=(−10000−10000−10000−1)←−1
{α=iβ=0{1→(1001)i→(0−110){α=√2iβ=1{1→(1001)i→(0−110)1(1001)(1000010000100001)(1001)(1000010000100001)−1(−100−1)(−10000−10000−10000−1)(−100−1)(−10000−10000−10000−1)i(i00−i)(0−1001000000100−10)(√2i11−√2i)(0−√210√2001100√201−√20)−i(−i00i)(0100−1000000−10010)(−√2i−1−1√2i)(0−1−10100−1−10010−1−10)j(0−110)(00−10000−110000100)(0−110)(00−10000−110000100)−j(01−10)(00100001−10000−100)(01−10)(00100001−10000−100)k(0−i−i0)(000100−100100−1000)(1−√2i−√2i−1)(100√201−√200√2−10−√200−1)−k(0ii0)(000−100100−1001000)(−1√2i√2i1)(−100−√20−1√200−√210√2001)
some examinations
ij→(0−√210√2001100√201−√20)(00−10000−110000100)=(100√201−√200√2−10−√200−1)←k