Chapter 44: df
44.1 df decomposed with partials as a set of basis in vector space
f={fi}={f1,f2,⋯}={f,g,⋯}
v:f→F
v(af+bg)=av(f)+bv(g)
v(fg)=f|Pv(g)+v(f)g|P
ddx[f(x)g(x)]|x=x0=f(x0)ddxg(x)|x=x0+ddxf(x)|x=x0g(x0)
V={v|v:f→F}
f=f(x)=f(x1,⋯,xj,⋯,xn)=f(x1,⋯,xj,⋯,xn)
x=⟨x1,⋯,xj,⋯,xn⟩
x(t)=⟨x1(t),⋯,xj(t),⋯,xn(t)⟩
dfdt=dx1dt∂f∂x1+⋯+dxjdt∂f∂xj+⋯+dxndt∂f∂xn=⋯+dxjdt∂f∂xj+⋯=dxjdt∂f∂xj=dxjdt∂jf
V=span{e1,⋯,ej,⋯,en}=span{∂∂x1|P,⋯,∂∂xj|P,⋯,∂∂xn|P}=span{∂1,⋯,∂j,⋯,∂n}={∂t|∂t=ajej=aj∂j=aj∂∂xj|P}={∂∂t|P|∂∂t|P=a1∂∂x1|P+⋯+aj∂∂xj|P+⋯+an∂∂xn|P}
44.2 dual space of span of partials
V∗={ωf|ωf:V→F}
ωf(ej)=ωf(∂j)=ωf(∂∂xj|P)=∂f∂xj|P∈F
ωfg(∂j)=∂fg∂xj|P=f|P∂g∂xj|P+∂f∂xj|Pg|P=f|Pωg(∂j)+ωf(∂j)g|P
ωxi(∂j)=ωxi(∂∂xj|P)=∂xi∂xj|P=δij={1i=j0i≠j
V∗={ωf|ωf:V→F}={ωf|{ωf(ej)=ωf(∂j)=ωf(∂∂xj|P)=∂f∂xj|P∈Fωfg(∂j)=f|Pωg(∂j)+ωf(∂j)g|Pωxi(∂j)=ωxi(∂∂xj|P)=∂xi∂xj|P=δij={1i=j0i≠j}={df|df:V→F}={df|{df(ej)=df(∂j)=df(∂∂xj|P)=∂f∂xj|P∈Fdfg(∂j)=f|P(dg)+(df)g|Pdxi(∂j)=dxi(∂∂xj|P)=∂xi∂xj|P=δij={1i=j0i≠j}
dxi(∂∂xj|P)=δij=ei⋅ej⇒{ei=dxiej=∂∂xj|P
V∗={df|df:V→F}={df|{df(ej)=df(∂j)=df(∂∂xj|P)=∂f∂xj|P∈Fdfg(∂j)=f|P(dg)+(df)g|Pdxi(∂j)=dxi(∂∂xj|P)=∂xi∂xj|P=δij={1i=j0i≠j}=span{dx1,⋯,dxi,⋯,dxn}=span{e1,⋯,ej,⋯,en}
44.3 directional derivative
df(v)=df(vjej)=vjdf(ej)=vjdf(∂j)=vj∂f∂xj|P=v1∂f∂x1|P+⋯+vj∂f∂xj|P+⋯+vn∂f∂xn|P=(v1⋯vj⋯vn)∇f
⌢PQ=C(t)−C(0)=Q−P
v=∂∂t|P
df(sv)=df(s∂∂t|P)=s∂f∂t|P=sv(f)=s⋅limt→0f(C(t))−f(C(0))t≈s⋅f(Q)−f(P)s=f(Q)−f(P)=Δf
44.4 coefficient of linear combination for vector space and dual space
V={v|v:f→F}=span{e1,⋯,ej,⋯,en}=span{∂∂x1|P,⋯,∂∂xj|P,⋯,∂∂xn|P}=span{∂1,⋯,∂j,⋯,∂n}={∂t|∂t=ajej=aj∂j=aj∂∂xj|P}={∂∂t|P|∂∂t|P=a1∂∂x1|P+⋯+aj∂∂xj|P+⋯+an∂∂xn|P}V∗={df|df:V→F}=span{e1,⋯,ei,⋯,en}=span{dx1,⋯,dxi,⋯,dxn}={df|df=biei=bidxi}={df|df=b1dx1+⋯+bidxi+⋯+bndxn}
or more simply to be comparison
V=span{ej=∂j}={v=∂t|P=ajej=aj ∂j|P:f→F}V∗=span{ei=dxi}={ω=df=biei=bi dxi:V→F}
{dxi(∂j)=dxi(∂∂xj|P)=∂xi∂xj|P=δij={1i=j0i≠j∂t=ajej=aj∂j⇔∂∂t|P=a1∂∂x1|P+⋯+aj∂∂xj|P+⋯+an∂∂xn|P⇒{dxi(∂t)=dxi(∂∂t|P)=∂xi∂t|Pdxi(∂t)=dxi(aj∂j)=ajdxi(∂j)=ajδij=ai⇒ai=dxi(∂t)=∂xi∂t|P⇒ai=∂xi∂t|P⇒aj=∂xj∂t|P=∂txj|P⇒∂∂t|P=ai∂∂xi|P=∂xi∂t|P∂∂xi|P=∂xi∂t∂∂xi|P⇒∂∂t=∂xi∂t∂∂xi⇒∂t|P=∂xj∂t∂j|P⇔∂t|P=∂txj∂j|P
df=biei=bidxi∂f∂xj=df(∂j)=df(ej)=biei⋅ej=biδij=bjbj=∂f∂xjbi=∂f∂xi=∂ifdf=biei=bidxi=∂f∂xidxidf=∂f∂xidxidf=∂ifdxi
V=span{ej=∂j}={v=∂t|P=ajej=∂txj ∂j|P:f→F}V∗=span{ei=dxi}={ω=df=biei=∂if dxi:V→F}
44.5 change of basis / change of coordinate
∂∂t=∂xi∂t∂∂xit=x′j⇒∂∂x′j=∂xi∂x′j∂∂xi=∂x1∂x′j∂∂x1+∂x2∂x′j∂∂x2+∂x3∂x′j∂∂x3
df=∂f∂xidxif=x′j⇓dx′j=∂x′j∂xidxi
{∂∂x′j=∂xi∂x′j∂∂xi=∑i∂xi∂x′j∂∂xidx′j=∂x′j∂xidxi=∑i∂x′j∂xidxi
44.8 What is Math: differential geometry
https://www.youtube.com/playlist?list=PLXo8Tdaw0czOWyRD-esa6mNajlPZnjHQs
44.9 Liang, Can-bin: differential geometry and general relativity
https://www.bilibili.com/video/BV1o4411L72E
https://www.youtube.com/playlist?list=PLstdOGDXMaWIKCWheiNIRumejII0gItYM
https://www.youtube.com/playlist?list=PLstdOGDXMaWICAkLFdCX24pwcWww5YzyQ