Chapter 44: df
44.1 df decomposed with partials as a set of basis in vector space
f={fi}={f1,f2,⋯}={f,g,⋯}
v:f→F
v(af+bg)=av(f)+bv(g)
v(fg)=f|Pv(g)+v(f)g|P
ddx[f(x)g(x)]|x=x0=f(x0)ddxg(x)|x=x0+ddxf(x)|x=x0g(x0)
V={v|v:f→F}
f=f(x)=f(x1,⋯,xj,⋯,xn)=f(x1,⋯,xj,⋯,xn)
x=⟨x1,⋯,xj,⋯,xn⟩
x(t)=⟨x1(t),⋯,xj(t),⋯,xn(t)⟩
dfdt=dx1dt∂f∂x1+⋯+dxjdt∂f∂xj+⋯+dxndt∂f∂xn=⋯+dxjdt∂f∂xj+⋯=dxjdt∂f∂xj=dxjdt∂jf
V=span{e1,⋯,ej,⋯,en}=span{∂∂x1|P,⋯,∂∂xj|P,⋯,∂∂xn|P}=span{∂1,⋯,∂j,⋯,∂n}={∂t|∂t=ajej=aj∂j=aj∂∂xj|P}={∂∂t|P|∂∂t|P=a1∂∂x1|P+⋯+aj∂∂xj|P+⋯+an∂∂xn|P}
44.2 dual space of span of partials
V∗={ωf|ωf:V→F}
ωf(ej)=ωf(∂j)=ωf(∂∂xj|P)=∂f∂xj|P∈F
ωfg(∂j)=∂fg∂xj|P=f|P∂g∂xj|P+∂f∂xj|Pg|P=f|Pωg(∂j)+ωf(∂j)g|P
ωxi(∂j)=ωxi(∂∂xj|P)=∂xi∂xj|P=δij={1i=j0i≠j
V∗={ωf|ωf:V→F}={ωf|{ωf(ej)=ωf(∂j)=ωf(∂∂xj|P)=∂f∂xj|P∈Fωfg(∂j)=f|Pωg(∂j)+ωf(∂j)g|Pωxi(∂j)=ωxi(∂∂xj|P)=∂xi∂xj|P=δij={1i=j0i≠j}={df|df:V→F}={df|{df(ej)=df(∂j)=df(∂∂xj|P)=∂f∂xj|P∈Fdfg(∂j)=f|P(dg)+(df)g|Pdxi(∂j)=dxi(∂∂xj|P)=∂xi∂xj|P=δij={1i=j0i≠j}
dxi(∂∂xj|P)=δij=ei⋅ej⇒{ei=dxiej=∂∂xj|P
V∗={df|df:V→F}={df|{df(ej)=df(∂j)=df(∂∂xj|P)=∂f∂xj|P∈Fdfg(∂j)=f|P(dg)+(df)g|Pdxi(∂j)=dxi(∂∂xj|P)=∂xi∂xj|P=δij={1i=j0i≠j}=span{dx1,⋯,dxi,⋯,dxn}=span{e1,⋯,ej,⋯,en}
44.3 directional derivative
df(v)=df(vjej)=vjdf(ej)=vjdf(∂j)=vj∂f∂xj|P=v1∂f∂x1|P+⋯+vj∂f∂xj|P+⋯+vn∂f∂xn|P=(v1⋯vj⋯vn)∇f
⌢PQ=C(t)−C(0)=Q−P
v=∂∂t|P
df(sv)=df(s∂∂t|P)=s∂f∂t|P=sv(f)=s⋅lim
44.4 coefficient of linear combination for vector space and dual space
\begin{aligned} V= & \left\{ \boldsymbol{v}\middle|\boldsymbol{v}:f\rightarrow F\right\} \\ = & \mathrm{span}\left\{ \boldsymbol{e}_{{\scriptscriptstyle 1}},\cdots,\boldsymbol{e}_{{\scriptscriptstyle j}},\cdots,\boldsymbol{e}_{{\scriptscriptstyle n}}\right\} \\ = & \mathrm{span}\left\{ \dfrac{\partial}{\partial x^{{\scriptscriptstyle 1}}}|_{{\scriptscriptstyle P}},\cdots,\dfrac{\partial}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}},\cdots,\dfrac{\partial}{\partial x^{{\scriptscriptstyle n}}}|_{{\scriptscriptstyle P}}\right\} =\mathrm{span}\left\{ \boldsymbol{\partial}_{{\scriptscriptstyle 1}},\cdots,\boldsymbol{\partial}_{{\scriptscriptstyle j}},\cdots,\boldsymbol{\partial}_{{\scriptscriptstyle n}}\right\} \\ = & \left\{ \boldsymbol{\partial}_{{\scriptscriptstyle t}}\middle|\boldsymbol{\partial}_{{\scriptscriptstyle t}}=a_{{\scriptscriptstyle j}}\boldsymbol{e}_{{\scriptscriptstyle j}}=a_{{\scriptscriptstyle j}}\boldsymbol{\partial}_{{\scriptscriptstyle j}}=a_{{\scriptscriptstyle j}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}}\right\} \\ = & \left\{ \dfrac{\partial}{\partial t}|_{{\scriptscriptstyle P}}\middle|\dfrac{\partial}{\partial t}|_{{\scriptscriptstyle P}}=a_{{\scriptscriptstyle 1}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle 1}}}|_{{\scriptscriptstyle P}}+\cdots+a_{{\scriptscriptstyle j}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}}+\cdots+a_{{\scriptscriptstyle n}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle n}}}|_{{\scriptscriptstyle P}}\right\} \\ V^{*}= & \left\{ \mathrm{d}f\middle|\mathrm{d}f:V\rightarrow F\right\} \\ = & \mathrm{span}\left\{ \boldsymbol{e}^{{\scriptscriptstyle 1}},\cdots,\boldsymbol{e}^{{\scriptscriptstyle i}},\cdots,\boldsymbol{e}^{{\scriptscriptstyle n}}\right\} \\ = & \mathrm{span}\left\{ \mathrm{d}x^{{\scriptscriptstyle 1}},\cdots,\mathrm{d}x^{{\scriptscriptstyle i}},\cdots,\mathrm{d}x^{{\scriptscriptstyle n}}\right\} \\ = & \left\{ \mathrm{d}f\middle|\mathrm{d}f=b^{{\scriptscriptstyle i}}\boldsymbol{e}^{{\scriptscriptstyle i}}=b^{{\scriptscriptstyle i}}\mathrm{d}x^{{\scriptscriptstyle i}}\right\} \\ = & \left\{ \mathrm{d}f\middle|\mathrm{d}f=b^{{\scriptscriptstyle 1}}\mathrm{d}x^{{\scriptscriptstyle 1}}+\cdots+b^{{\scriptscriptstyle i}}\mathrm{d}x^{{\scriptscriptstyle i}}+\cdots+b^{{\scriptscriptstyle n}}\mathrm{d}x^{{\scriptscriptstyle n}}\right\} \end{aligned}
or more simply to be comparison
\begin{array}{ccccccccccc} V & =\mathrm{span}\{ & \boldsymbol{e}_{{\scriptscriptstyle j}}= & \partial_{{\scriptscriptstyle j}} & \}=\{ & \boldsymbol{v}= & \partial_{{\scriptscriptstyle t}}|_{{\scriptscriptstyle P}} & =a_{{\scriptscriptstyle j}}\thinspace\boldsymbol{e}_{{\scriptscriptstyle j}}= & a_{{\scriptscriptstyle j}}\ \partial_{{\scriptscriptstyle j}}|_{{\scriptscriptstyle P}} & :f\rightarrow F & \}\\ V^{*} & =\mathrm{span}\{ & \boldsymbol{e}^{{\scriptscriptstyle i}}= & \mathrm{d}x^{{\scriptscriptstyle i}} & \}=\{ & \boldsymbol{\omega}= & \mathrm{d}f & =b^{{\scriptscriptstyle i}}\thinspace\boldsymbol{e}^{{\scriptscriptstyle i}}= & b^{{\scriptscriptstyle i}}\ \mathrm{d}x^{{\scriptscriptstyle i}} & :V\rightarrow F & \} \end{array}
\begin{aligned} & \begin{cases} \mathrm{d}x^{{\scriptscriptstyle i}}\left(\boldsymbol{\partial}_{{\scriptscriptstyle j}}\right)=\mathrm{d}x^{{\scriptscriptstyle i}}\left(\dfrac{\partial}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}}\right)=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}}=\delta_{{\scriptscriptstyle ij}}=\begin{cases} 1 & i=j\\ 0 & i\ne j \end{cases}\\ \boldsymbol{\partial}_{{\scriptscriptstyle t}}=a_{{\scriptscriptstyle j}}\boldsymbol{e}_{{\scriptscriptstyle j}}=a_{{\scriptscriptstyle j}}\boldsymbol{\partial}_{{\scriptscriptstyle j}}\Leftrightarrow\dfrac{\partial}{\partial t}|_{{\scriptscriptstyle P}}=a_{{\scriptscriptstyle 1}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle 1}}}|_{{\scriptscriptstyle P}}+\cdots+a_{{\scriptscriptstyle j}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}}+\cdots+a_{{\scriptscriptstyle n}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle n}}}|_{{\scriptscriptstyle P}} \end{cases}\\ \Rightarrow & \begin{cases} \mathrm{d}x^{{\scriptscriptstyle i}}\left(\boldsymbol{\partial}_{{\scriptscriptstyle t}}\right)=\mathrm{d}x^{{\scriptscriptstyle i}}\left(\dfrac{\partial}{\partial t}|_{{\scriptscriptstyle P}}\right)=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}|_{{\scriptscriptstyle P}}\\ \mathrm{d}x^{{\scriptscriptstyle i}}\left(\boldsymbol{\partial}_{{\scriptscriptstyle t}}\right)=\mathrm{d}x^{{\scriptscriptstyle i}}\left(a_{{\scriptscriptstyle j}}\boldsymbol{\partial}_{{\scriptscriptstyle j}}\right)=a_{{\scriptscriptstyle j}}\mathrm{d}x^{{\scriptscriptstyle i}}\left(\boldsymbol{\partial}_{{\scriptscriptstyle j}}\right)=a_{{\scriptscriptstyle j}}\delta_{{\scriptscriptstyle ij}}=a_{{\scriptscriptstyle i}} \end{cases}\Rightarrow a_{{\scriptscriptstyle i}}=\mathrm{d}x^{{\scriptscriptstyle i}}\left(\boldsymbol{\partial}_{{\scriptscriptstyle t}}\right)=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}|_{{\scriptscriptstyle P}}\\ \Rightarrow & a_{{\scriptscriptstyle i}}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}|_{{\scriptscriptstyle P}}\Rightarrow a_{{\scriptscriptstyle j}}=\dfrac{\partial x^{{\scriptscriptstyle j}}}{\partial t}|_{{\scriptscriptstyle P}}=\partial_{{\scriptscriptstyle t}}x^{{\scriptscriptstyle j}}|_{{\scriptscriptstyle P}}\\ \Rightarrow & \dfrac{\partial}{\partial t}|_{{\scriptscriptstyle P}}=a_{{\scriptscriptstyle i}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}|_{{\scriptscriptstyle P}}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}|_{{\scriptscriptstyle P}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}|_{{\scriptscriptstyle P}}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}|_{{\scriptscriptstyle P}}\Rightarrow\dfrac{\partial}{\partial t}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}\\ \Rightarrow & \partial_{{\scriptscriptstyle t}}|_{{\scriptscriptstyle P}}=\dfrac{\partial x^{{\scriptscriptstyle j}}}{\partial t}\partial_{{\scriptscriptstyle j}}|_{{\scriptscriptstyle P}}\Leftrightarrow\partial_{{\scriptscriptstyle t}}|_{{\scriptscriptstyle P}}=\partial_{{\scriptscriptstyle t}}x^{{\scriptscriptstyle j}}\partial_{{\scriptscriptstyle j}}|_{{\scriptscriptstyle P}} \end{aligned}
\begin{aligned} \mathrm{d}f= & b^{{\scriptscriptstyle i}}\boldsymbol{e}^{{\scriptscriptstyle i}}=b^{{\scriptscriptstyle i}}\mathrm{d}x^{{\scriptscriptstyle i}}\\ \dfrac{\partial f}{\partial x^{{\scriptscriptstyle j}}}=\mathrm{d}f\left(\boldsymbol{\partial}_{{\scriptscriptstyle j}}\right)=\mathrm{d}f\left(\boldsymbol{e}_{{\scriptscriptstyle j}}\right)= & b^{{\scriptscriptstyle i}}\boldsymbol{e}^{{\scriptscriptstyle i}}\cdot\boldsymbol{e}_{{\scriptscriptstyle j}}=b^{{\scriptscriptstyle i}}\delta_{{\scriptscriptstyle ij}}=b^{{\scriptscriptstyle j}}\\ b^{{\scriptscriptstyle j}}= & \dfrac{\partial f}{\partial x^{{\scriptscriptstyle j}}}\\ b^{{\scriptscriptstyle i}}= & \dfrac{\partial f}{\partial x^{{\scriptscriptstyle i}}}=\partial_{{\scriptscriptstyle i}}f\\ \mathrm{d}f=b^{{\scriptscriptstyle i}}\boldsymbol{e}^{{\scriptscriptstyle i}}=b^{{\scriptscriptstyle i}}\mathrm{d}x^{{\scriptscriptstyle i}}= & \dfrac{\partial f}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}}\\ \mathrm{d}f= & \dfrac{\partial f}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}}\\ \mathrm{d}f= & \partial_{{\scriptscriptstyle i}}f\mathrm{d}x^{{\scriptscriptstyle i}} \end{aligned}
\begin{array}{ccccccccccc} V & =\mathrm{span}\{ & \boldsymbol{e}_{{\scriptscriptstyle j}}= & \partial_{{\scriptscriptstyle j}} & \}=\{ & \boldsymbol{v}= & \partial_{{\scriptscriptstyle t}}|_{{\scriptscriptstyle P}} & =a_{{\scriptscriptstyle j}}\thinspace\boldsymbol{e}_{{\scriptscriptstyle j}}= & \partial_{{\scriptscriptstyle t}}x^{{\scriptscriptstyle j}}\ \partial_{{\scriptscriptstyle j}}|_{{\scriptscriptstyle P}} & :f\rightarrow F & \}\\ V^{*} & =\mathrm{span}\{ & \boldsymbol{e}^{{\scriptscriptstyle i}}= & \mathrm{d}x^{{\scriptscriptstyle i}} & \}=\{ & \boldsymbol{\omega}= & \mathrm{d}f & =b^{{\scriptscriptstyle i}}\thinspace\boldsymbol{e}^{{\scriptscriptstyle i}}= & \partial_{{\scriptscriptstyle i}}f\ \mathrm{d}x^{{\scriptscriptstyle i}} & :V\rightarrow F & \} \end{array}
44.5 change of basis / change of coordinate
\dfrac{\partial}{\partial t}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}\overset{t=x^{\prime{\scriptscriptstyle j}}}{\Rightarrow}\dfrac{\partial}{\partial x^{\prime{\scriptscriptstyle j}}}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}=\dfrac{\partial x^{{\scriptscriptstyle 1}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle 1}}}+\dfrac{\partial x^{{\scriptscriptstyle 2}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle 2}}}+\dfrac{\partial x^{{\scriptscriptstyle 3}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle 3}}}
\begin{aligned} \mathrm{d}f= & \dfrac{\partial f}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}}\\ f=x^{\prime{\scriptscriptstyle j}}\Downarrow\\ \mathrm{d}x^{\prime{\scriptscriptstyle j}}= & \dfrac{\partial x^{\prime{\scriptscriptstyle j}}}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}} \end{aligned}
\begin{cases} \dfrac{\partial}{\partial x^{\prime{\scriptscriptstyle j}}}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}=\sum\limits _{i}\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}\\ \mathrm{d}x^{\prime{\scriptscriptstyle j}}=\dfrac{\partial x^{\prime{\scriptscriptstyle j}}}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}}=\sum\limits_{i}\dfrac{\partial x^{\prime{\scriptscriptstyle j}}}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}} \end{cases}
44.8 What is Math: differential geometry
https://www.youtube.com/playlist?list=PLXo8Tdaw0czOWyRD-esa6mNajlPZnjHQs
44.9 Liang, Can-bin: differential geometry and general relativity
https://www.bilibili.com/video/BV1o4411L72E
https://www.youtube.com/playlist?list=PLstdOGDXMaWIKCWheiNIRumejII0gItYM
https://www.youtube.com/playlist?list=PLstdOGDXMaWICAkLFdCX24pwcWww5YzyQ