Chapter 44: df

44.1 df decomposed with partials as a set of basis in vector space

f={fi}={f1,f2,}={f,g,}

v:fF

v(af+bg)=av(f)+bv(g)

v(fg)=f|Pv(g)+v(f)g|P

ddx[f(x)g(x)]|x=x0=f(x0)ddxg(x)|x=x0+ddxf(x)|x=x0g(x0)

V={v|v:fF}

f=f(x)=f(x1,,xj,,xn)=f(x1,,xj,,xn)

x=x1,,xj,,xn

x(t)=x1(t),,xj(t),,xn(t)

dfdt=dx1dtfx1++dxjdtfxj++dxndtfxn=+dxjdtfxj+=dxjdtfxj=dxjdtjf

V=span{e1,,ej,,en}=span{x1|P,,xj|P,,xn|P}=span{1,,j,,n}={t|t=ajej=ajj=ajxj|P}={t|P|t|P=a1x1|P++ajxj|P++anxn|P}

44.2 dual space of span of partials

V={ωf|ωf:VF}

ωf(ej)=ωf(j)=ωf(xj|P)=fxj|PF

ωfg(j)=fgxj|P=f|Pgxj|P+fxj|Pg|P=f|Pωg(j)+ωf(j)g|P

ωxi(j)=ωxi(xj|P)=xixj|P=δij={1i=j0ij

V={ωf|ωf:VF}={ωf|{ωf(ej)=ωf(j)=ωf(xj|P)=fxj|PFωfg(j)=f|Pωg(j)+ωf(j)g|Pωxi(j)=ωxi(xj|P)=xixj|P=δij={1i=j0ij}={df|df:VF}={df|{df(ej)=df(j)=df(xj|P)=fxj|PFdfg(j)=f|P(dg)+(df)g|Pdxi(j)=dxi(xj|P)=xixj|P=δij={1i=j0ij}

dxi(xj|P)=δij=eiej{ei=dxiej=xj|P

V={df|df:VF}={df|{df(ej)=df(j)=df(xj|P)=fxj|PFdfg(j)=f|P(dg)+(df)g|Pdxi(j)=dxi(xj|P)=xixj|P=δij={1i=j0ij}=span{dx1,,dxi,,dxn}=span{e1,,ej,,en}

44.3 directional derivative

df(v)=df(vjej)=vjdf(ej)=vjdf(j)=vjfxj|P=v1fx1|P++vjfxj|P++vnfxn|P=(v1vjvn)f


PQ=C(t)C(0)=QP

v=t|P

df(sv)=df(st|P)=sft|P=sv(f)=slimt0f(C(t))f(C(0))tsf(Q)f(P)s=f(Q)f(P)=Δf

44.4 coefficient of linear combination for vector space and dual space

V={v|v:fF}=span{e1,,ej,,en}=span{x1|P,,xj|P,,xn|P}=span{1,,j,,n}={t|t=ajej=ajj=ajxj|P}={t|P|t|P=a1x1|P++ajxj|P++anxn|P}V={df|df:VF}=span{e1,,ei,,en}=span{dx1,,dxi,,dxn}={df|df=biei=bidxi}={df|df=b1dx1++bidxi++bndxn}


or more simply to be comparison

V=span{ej=j}={v=t|P=ajej=aj j|P:fF}V=span{ei=dxi}={ω=df=biei=bi dxi:VF}


{dxi(j)=dxi(xj|P)=xixj|P=δij={1i=j0ijt=ajej=ajjt|P=a1x1|P++ajxj|P++anxn|P{dxi(t)=dxi(t|P)=xit|Pdxi(t)=dxi(ajj)=ajdxi(j)=ajδij=aiai=dxi(t)=xit|Pai=xit|Paj=xjt|P=txj|Pt|P=aixi|P=xit|Pxi|P=xitxi|Pt=xitxit|P=xjtj|Pt|P=txjj|P

df=biei=bidxifxj=df(j)=df(ej)=bieiej=biδij=bjbj=fxjbi=fxi=ifdf=biei=bidxi=fxidxidf=fxidxidf=ifdxi


V=span{ej=j}={v=t|P=ajej=txj j|P:fF}V=span{ei=dxi}={ω=df=biei=if dxi:VF}

44.5 change of basis / change of coordinate

t=xitxit=xjxj=xixjxi=x1xjx1+x2xjx2+x3xjx3

df=fxidxif=xjdxj=xjxidxi


{xj=xixjxi=ixixjxidxj=xjxidxi=ixjxidxi

44.6 ambiguity with partial notation

https://www.youtube.com/watch?v=mICbKwwHziI

44.7 1-form

1-form = one-form