Chapter 44: df

44.1 df decomposed with partials as a set of basis in vector space

f={fi}={f1,f2,}={f,g,}

v:fF

v(af+bg)=av(f)+bv(g)

v(fg)=f|Pv(g)+v(f)g|P

ddx[f(x)g(x)]|x=x0=f(x0)ddxg(x)|x=x0+ddxf(x)|x=x0g(x0)

V={v|v:fF}

f=f(x)=f(x1,,xj,,xn)=f(x1,,xj,,xn)

x=x1,,xj,,xn

x(t)=x1(t),,xj(t),,xn(t)

dfdt=dx1dtfx1++dxjdtfxj++dxndtfxn=+dxjdtfxj+=dxjdtfxj=dxjdtjf

V=span{e1,,ej,,en}=span{x1|P,,xj|P,,xn|P}=span{1,,j,,n}={t|t=ajej=ajj=ajxj|P}={t|P|t|P=a1x1|P++ajxj|P++anxn|P}

44.2 dual space of span of partials

V={ωf|ωf:VF}

ωf(ej)=ωf(j)=ωf(xj|P)=fxj|PF

ωfg(j)=fgxj|P=f|Pgxj|P+fxj|Pg|P=f|Pωg(j)+ωf(j)g|P

ωxi(j)=ωxi(xj|P)=xixj|P=δij={1i=j0ij

V={ωf|ωf:VF}={ωf|{ωf(ej)=ωf(j)=ωf(xj|P)=fxj|PFωfg(j)=f|Pωg(j)+ωf(j)g|Pωxi(j)=ωxi(xj|P)=xixj|P=δij={1i=j0ij}={df|df:VF}={df|{df(ej)=df(j)=df(xj|P)=fxj|PFdfg(j)=f|P(dg)+(df)g|Pdxi(j)=dxi(xj|P)=xixj|P=δij={1i=j0ij}

dxi(xj|P)=δij=eiej{ei=dxiej=xj|P

V={df|df:VF}={df|{df(ej)=df(j)=df(xj|P)=fxj|PFdfg(j)=f|P(dg)+(df)g|Pdxi(j)=dxi(xj|P)=xixj|P=δij={1i=j0ij}=span{dx1,,dxi,,dxn}=span{e1,,ej,,en}

44.3 directional derivative

df(v)=df(vjej)=vjdf(ej)=vjdf(j)=vjfxj|P=v1fx1|P++vjfxj|P++vnfxn|P=(v1vjvn)f


PQ=C(t)C(0)=QP

v=t|P

df(sv)=df(st|P)=sft|P=sv(f)=slim

44.4 coefficient of linear combination for vector space and dual space

\begin{aligned} V= & \left\{ \boldsymbol{v}\middle|\boldsymbol{v}:f\rightarrow F\right\} \\ = & \mathrm{span}\left\{ \boldsymbol{e}_{{\scriptscriptstyle 1}},\cdots,\boldsymbol{e}_{{\scriptscriptstyle j}},\cdots,\boldsymbol{e}_{{\scriptscriptstyle n}}\right\} \\ = & \mathrm{span}\left\{ \dfrac{\partial}{\partial x^{{\scriptscriptstyle 1}}}|_{{\scriptscriptstyle P}},\cdots,\dfrac{\partial}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}},\cdots,\dfrac{\partial}{\partial x^{{\scriptscriptstyle n}}}|_{{\scriptscriptstyle P}}\right\} =\mathrm{span}\left\{ \boldsymbol{\partial}_{{\scriptscriptstyle 1}},\cdots,\boldsymbol{\partial}_{{\scriptscriptstyle j}},\cdots,\boldsymbol{\partial}_{{\scriptscriptstyle n}}\right\} \\ = & \left\{ \boldsymbol{\partial}_{{\scriptscriptstyle t}}\middle|\boldsymbol{\partial}_{{\scriptscriptstyle t}}=a_{{\scriptscriptstyle j}}\boldsymbol{e}_{{\scriptscriptstyle j}}=a_{{\scriptscriptstyle j}}\boldsymbol{\partial}_{{\scriptscriptstyle j}}=a_{{\scriptscriptstyle j}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}}\right\} \\ = & \left\{ \dfrac{\partial}{\partial t}|_{{\scriptscriptstyle P}}\middle|\dfrac{\partial}{\partial t}|_{{\scriptscriptstyle P}}=a_{{\scriptscriptstyle 1}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle 1}}}|_{{\scriptscriptstyle P}}+\cdots+a_{{\scriptscriptstyle j}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}}+\cdots+a_{{\scriptscriptstyle n}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle n}}}|_{{\scriptscriptstyle P}}\right\} \\ V^{*}= & \left\{ \mathrm{d}f\middle|\mathrm{d}f:V\rightarrow F\right\} \\ = & \mathrm{span}\left\{ \boldsymbol{e}^{{\scriptscriptstyle 1}},\cdots,\boldsymbol{e}^{{\scriptscriptstyle i}},\cdots,\boldsymbol{e}^{{\scriptscriptstyle n}}\right\} \\ = & \mathrm{span}\left\{ \mathrm{d}x^{{\scriptscriptstyle 1}},\cdots,\mathrm{d}x^{{\scriptscriptstyle i}},\cdots,\mathrm{d}x^{{\scriptscriptstyle n}}\right\} \\ = & \left\{ \mathrm{d}f\middle|\mathrm{d}f=b^{{\scriptscriptstyle i}}\boldsymbol{e}^{{\scriptscriptstyle i}}=b^{{\scriptscriptstyle i}}\mathrm{d}x^{{\scriptscriptstyle i}}\right\} \\ = & \left\{ \mathrm{d}f\middle|\mathrm{d}f=b^{{\scriptscriptstyle 1}}\mathrm{d}x^{{\scriptscriptstyle 1}}+\cdots+b^{{\scriptscriptstyle i}}\mathrm{d}x^{{\scriptscriptstyle i}}+\cdots+b^{{\scriptscriptstyle n}}\mathrm{d}x^{{\scriptscriptstyle n}}\right\} \end{aligned}


or more simply to be comparison

\begin{array}{ccccccccccc} V & =\mathrm{span}\{ & \boldsymbol{e}_{{\scriptscriptstyle j}}= & \partial_{{\scriptscriptstyle j}} & \}=\{ & \boldsymbol{v}= & \partial_{{\scriptscriptstyle t}}|_{{\scriptscriptstyle P}} & =a_{{\scriptscriptstyle j}}\thinspace\boldsymbol{e}_{{\scriptscriptstyle j}}= & a_{{\scriptscriptstyle j}}\ \partial_{{\scriptscriptstyle j}}|_{{\scriptscriptstyle P}} & :f\rightarrow F & \}\\ V^{*} & =\mathrm{span}\{ & \boldsymbol{e}^{{\scriptscriptstyle i}}= & \mathrm{d}x^{{\scriptscriptstyle i}} & \}=\{ & \boldsymbol{\omega}= & \mathrm{d}f & =b^{{\scriptscriptstyle i}}\thinspace\boldsymbol{e}^{{\scriptscriptstyle i}}= & b^{{\scriptscriptstyle i}}\ \mathrm{d}x^{{\scriptscriptstyle i}} & :V\rightarrow F & \} \end{array}


\begin{aligned} & \begin{cases} \mathrm{d}x^{{\scriptscriptstyle i}}\left(\boldsymbol{\partial}_{{\scriptscriptstyle j}}\right)=\mathrm{d}x^{{\scriptscriptstyle i}}\left(\dfrac{\partial}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}}\right)=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}}=\delta_{{\scriptscriptstyle ij}}=\begin{cases} 1 & i=j\\ 0 & i\ne j \end{cases}\\ \boldsymbol{\partial}_{{\scriptscriptstyle t}}=a_{{\scriptscriptstyle j}}\boldsymbol{e}_{{\scriptscriptstyle j}}=a_{{\scriptscriptstyle j}}\boldsymbol{\partial}_{{\scriptscriptstyle j}}\Leftrightarrow\dfrac{\partial}{\partial t}|_{{\scriptscriptstyle P}}=a_{{\scriptscriptstyle 1}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle 1}}}|_{{\scriptscriptstyle P}}+\cdots+a_{{\scriptscriptstyle j}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle j}}}|_{{\scriptscriptstyle P}}+\cdots+a_{{\scriptscriptstyle n}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle n}}}|_{{\scriptscriptstyle P}} \end{cases}\\ \Rightarrow & \begin{cases} \mathrm{d}x^{{\scriptscriptstyle i}}\left(\boldsymbol{\partial}_{{\scriptscriptstyle t}}\right)=\mathrm{d}x^{{\scriptscriptstyle i}}\left(\dfrac{\partial}{\partial t}|_{{\scriptscriptstyle P}}\right)=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}|_{{\scriptscriptstyle P}}\\ \mathrm{d}x^{{\scriptscriptstyle i}}\left(\boldsymbol{\partial}_{{\scriptscriptstyle t}}\right)=\mathrm{d}x^{{\scriptscriptstyle i}}\left(a_{{\scriptscriptstyle j}}\boldsymbol{\partial}_{{\scriptscriptstyle j}}\right)=a_{{\scriptscriptstyle j}}\mathrm{d}x^{{\scriptscriptstyle i}}\left(\boldsymbol{\partial}_{{\scriptscriptstyle j}}\right)=a_{{\scriptscriptstyle j}}\delta_{{\scriptscriptstyle ij}}=a_{{\scriptscriptstyle i}} \end{cases}\Rightarrow a_{{\scriptscriptstyle i}}=\mathrm{d}x^{{\scriptscriptstyle i}}\left(\boldsymbol{\partial}_{{\scriptscriptstyle t}}\right)=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}|_{{\scriptscriptstyle P}}\\ \Rightarrow & a_{{\scriptscriptstyle i}}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}|_{{\scriptscriptstyle P}}\Rightarrow a_{{\scriptscriptstyle j}}=\dfrac{\partial x^{{\scriptscriptstyle j}}}{\partial t}|_{{\scriptscriptstyle P}}=\partial_{{\scriptscriptstyle t}}x^{{\scriptscriptstyle j}}|_{{\scriptscriptstyle P}}\\ \Rightarrow & \dfrac{\partial}{\partial t}|_{{\scriptscriptstyle P}}=a_{{\scriptscriptstyle i}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}|_{{\scriptscriptstyle P}}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}|_{{\scriptscriptstyle P}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}|_{{\scriptscriptstyle P}}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}|_{{\scriptscriptstyle P}}\Rightarrow\dfrac{\partial}{\partial t}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}\\ \Rightarrow & \partial_{{\scriptscriptstyle t}}|_{{\scriptscriptstyle P}}=\dfrac{\partial x^{{\scriptscriptstyle j}}}{\partial t}\partial_{{\scriptscriptstyle j}}|_{{\scriptscriptstyle P}}\Leftrightarrow\partial_{{\scriptscriptstyle t}}|_{{\scriptscriptstyle P}}=\partial_{{\scriptscriptstyle t}}x^{{\scriptscriptstyle j}}\partial_{{\scriptscriptstyle j}}|_{{\scriptscriptstyle P}} \end{aligned}

\begin{aligned} \mathrm{d}f= & b^{{\scriptscriptstyle i}}\boldsymbol{e}^{{\scriptscriptstyle i}}=b^{{\scriptscriptstyle i}}\mathrm{d}x^{{\scriptscriptstyle i}}\\ \dfrac{\partial f}{\partial x^{{\scriptscriptstyle j}}}=\mathrm{d}f\left(\boldsymbol{\partial}_{{\scriptscriptstyle j}}\right)=\mathrm{d}f\left(\boldsymbol{e}_{{\scriptscriptstyle j}}\right)= & b^{{\scriptscriptstyle i}}\boldsymbol{e}^{{\scriptscriptstyle i}}\cdot\boldsymbol{e}_{{\scriptscriptstyle j}}=b^{{\scriptscriptstyle i}}\delta_{{\scriptscriptstyle ij}}=b^{{\scriptscriptstyle j}}\\ b^{{\scriptscriptstyle j}}= & \dfrac{\partial f}{\partial x^{{\scriptscriptstyle j}}}\\ b^{{\scriptscriptstyle i}}= & \dfrac{\partial f}{\partial x^{{\scriptscriptstyle i}}}=\partial_{{\scriptscriptstyle i}}f\\ \mathrm{d}f=b^{{\scriptscriptstyle i}}\boldsymbol{e}^{{\scriptscriptstyle i}}=b^{{\scriptscriptstyle i}}\mathrm{d}x^{{\scriptscriptstyle i}}= & \dfrac{\partial f}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}}\\ \mathrm{d}f= & \dfrac{\partial f}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}}\\ \mathrm{d}f= & \partial_{{\scriptscriptstyle i}}f\mathrm{d}x^{{\scriptscriptstyle i}} \end{aligned}


\begin{array}{ccccccccccc} V & =\mathrm{span}\{ & \boldsymbol{e}_{{\scriptscriptstyle j}}= & \partial_{{\scriptscriptstyle j}} & \}=\{ & \boldsymbol{v}= & \partial_{{\scriptscriptstyle t}}|_{{\scriptscriptstyle P}} & =a_{{\scriptscriptstyle j}}\thinspace\boldsymbol{e}_{{\scriptscriptstyle j}}= & \partial_{{\scriptscriptstyle t}}x^{{\scriptscriptstyle j}}\ \partial_{{\scriptscriptstyle j}}|_{{\scriptscriptstyle P}} & :f\rightarrow F & \}\\ V^{*} & =\mathrm{span}\{ & \boldsymbol{e}^{{\scriptscriptstyle i}}= & \mathrm{d}x^{{\scriptscriptstyle i}} & \}=\{ & \boldsymbol{\omega}= & \mathrm{d}f & =b^{{\scriptscriptstyle i}}\thinspace\boldsymbol{e}^{{\scriptscriptstyle i}}= & \partial_{{\scriptscriptstyle i}}f\ \mathrm{d}x^{{\scriptscriptstyle i}} & :V\rightarrow F & \} \end{array}

44.5 change of basis / change of coordinate

\dfrac{\partial}{\partial t}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial t}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}\overset{t=x^{\prime{\scriptscriptstyle j}}}{\Rightarrow}\dfrac{\partial}{\partial x^{\prime{\scriptscriptstyle j}}}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}=\dfrac{\partial x^{{\scriptscriptstyle 1}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle 1}}}+\dfrac{\partial x^{{\scriptscriptstyle 2}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle 2}}}+\dfrac{\partial x^{{\scriptscriptstyle 3}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle 3}}}

\begin{aligned} \mathrm{d}f= & \dfrac{\partial f}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}}\\ f=x^{\prime{\scriptscriptstyle j}}\Downarrow\\ \mathrm{d}x^{\prime{\scriptscriptstyle j}}= & \dfrac{\partial x^{\prime{\scriptscriptstyle j}}}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}} \end{aligned}


\begin{cases} \dfrac{\partial}{\partial x^{\prime{\scriptscriptstyle j}}}=\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}=\sum\limits _{i}\dfrac{\partial x^{{\scriptscriptstyle i}}}{\partial x^{\prime{\scriptscriptstyle j}}}\dfrac{\partial}{\partial x^{{\scriptscriptstyle i}}}\\ \mathrm{d}x^{\prime{\scriptscriptstyle j}}=\dfrac{\partial x^{\prime{\scriptscriptstyle j}}}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}}=\sum\limits_{i}\dfrac{\partial x^{\prime{\scriptscriptstyle j}}}{\partial x^{{\scriptscriptstyle i}}}\mathrm{d}x^{{\scriptscriptstyle i}} \end{cases}

44.6 ambiguity with partial notation

https://www.youtube.com/watch?v=mICbKwwHziI

44.7 1-form

1-form = one-form