## 10.4$$a_{\mu}^{W}(s)$$

$$a^2(\mbox{fm})$$ $$a_{\mu}^{W}(s)$$ r
0.0063387 2.7313(24)e-9 0
0.0063387 2.7315(23)e-9 0
0.0046522 2.7261(27)e-9 0
0.0032405 2.7260(30)e-9 0
0.0063387 2.6960(26)e-9 1
0.0063387 2.6965(25)e-9 1
0.0046522 2.7092(32)e-9 1
0.0032405 2.7205(30)e-9 1

The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2]+a^4P[4] \end{cases}$

$\begin{gather} \chi^2/d.o.f.=0.0160139 \\ P[0]=2.7443e-09\pm (3e-11) \\ P[1]=-9.31859e-09\pm (1.3e-08) \\ P[2]=-7.19828e-09\pm (1.3e-08) \\ P[3]=1.14945e-06\pm (1.3e-06) \\ P[4]=-6.18577e-08\pm (1.3e-06) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.994& -0.993& 0.986& 0.983\\ -0.994& 1& 0.999& -0.998& -0.995\\ -0.993& 0.999& 1& -0.997& -0.997\\ 0.986& -0.998& -0.997& 1& 0.998\\ 0.983& -0.995& -0.997& 0.998& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}

The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]+a^4P[3]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2] \end{cases}$
$\begin{gather} \chi^2/d.o.f.=0.0128634 \\ P[0]=2.74562e-09\pm (5.4e-12) \\ P[1]=-9.88338e-09\pm (1.3e-09) \\ P[2]=-7.79495e-09\pm (9.4e-10) \\ P[3]=1.206e-06\pm (1.2e-07) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.835& -0.922& 0.374\\ -0.835& 1& 0.859& -0.767\\ -0.922& 0.859& 1& -0.344\\ 0.374& -0.767& -0.344& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}
The continuum fit is done with the function $\begin{cases} a_{\mu}^{SD}(eq,s)=P[0]+a^2P[1]\\ a_{\mu}^{SD}(op,s)=P[0]+a^2P[2]+a^4P[3] \end{cases}$
$\begin{gather} \chi^2/d.o.f.=0.321635 \\ P[0]=2.71916e-09\pm (4.9e-12) \\ P[1]=1.87141e-09\pm (8.2e-10) \\ P[2]=3.74039e-09\pm (1e-09) \\ P[3]=-1.16652e-06\pm (1.1e-07) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& -0.915& -0.739& -0.00205\\ -0.915& 1& 0.76& 0.0786\\ -0.739& 0.76& 1& -0.576\\ -0.00205& 0.0786& -0.576& 1\\ \end{pmatrix} \\det=0\\ \end{gather}$}