= rbind(
P c(0, 1, 0, 0, 0, 0),
c(0, 0, 1, 0, 0, 0),
c(0.7, 0, 0, 0.3, 0, 0),
c(0, 0, 0, 0, 1, 0),
c(0, 0, 0, 0.3, 0, 0.7),
c(0, 0, 0, 0.8, 0, 0.2)
)
Discrete Time Markov Chains: Long Run Behavior
Recurrent and transient states example
plot_state_diagram(P)
Joining with `by = join_by(prob)`
plot_sample_path_proportions(c(1, 0, 0, 0, 0, 0), P, last_time = 1000)
Compute stationary distribution for the recurrent states
compute_stationary_distribution(P[4:6, 4:6])
[,1] [,2] [,3]
[1,] 0.3478261 0.3478261 0.3043478
Markov’s letters
= c("vowel", "consonant")
state_names
= rbind(
P c(0.128, 0.872),
c(0.663, 0.337)
)
= c(1, 0) pi_0
plot_sample_path_proportions(pi_0, P, state_names, last_time = 1000)
Ping pong
= c("AB", "AC", "BC")
state_names
= rbind(c(0, .7, .3),
P c(.8, 0, .2),
c(.6, .4, 0)
)
= c(1, 0, 0) pi_0
plot_sample_path_proportions(pi_0, P, state_names, last_time = 1000)