2 August 20

2.1 Announcements

  • Assignment #1 due Friday at 5 pm
    • Office hours 9:30 - 10:30 today
  • PDF/PMF handout -Reading Assignment

2.2 Statistical models

  • What is a model?
    • Simplification of something that is real designed to serve a purpose
  • What is a statistical model?
    • Simplification of a real data generating mechanism
    • Constructed from deterministic mathematical equations and Probability density /mass functions
    • Capable of generating data
  • What is the purpose of a statistical model
    • See section 1.2 on pg. 7 and pg. 77 of Wikle et al. (2019)
    • Capable of making predictions, forecasts, and hindcasts
    • Enables statistical inference about observable and unobservable quantities
    • Reliability quantify and communicate uncertainty
      • Example using simple linear regression

2.3 Matrix review

  • Column vectors
    • \(\mathbf{y}\equiv(y_{1},y_{2},\ldots,y_{n})^{'}\)
    • \(\mathbf{x}\equiv(x_{1},x_{2},\ldots,x_{n})^{'}\)
    • \(\boldsymbol{\beta}\equiv(\beta_{1},\beta_{2},\ldots,\beta_{p})^{'}\)
    • \(\boldsymbol{1}\equiv(1,1,\ldots,1)^{'}\)
    • In R
    ##      [,1]
    ## [1,]    1
    ## [2,]    2
    ## [3,]    3
  • Matrices
    • \(\mathbf{X}\equiv(\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{p})\)
    • In R
    ##      [,1] [,2]
    ## [1,]    1    4
    ## [2,]    2    5
    ## [3,]    3    6
  • Vector multiplication
    • \(\mathbf{y}^{'}\mathbf{y}\)
    • \(\mathbf{1}^{'}\mathbf{1}\)
    • \(\mathbf{1}\mathbf{1}^{'}\)
    • In R
    ##      [,1]
    ## [1,]   14
  • Matrix by vector multiplication
    • \(\mathbf{X}^{'}\mathbf{y}\)
    • In R
    ##      [,1]
    ## [1,]   14
    ## [2,]   32
  • Matrix by matrix multiplication
    • \(\mathbf{X}^{'}\mathbf{X}\)
    • In R
    ##      [,1] [,2]
    ## [1,]   14   32
    ## [2,]   32   77
  • Matrix inversion
    • \((\mathbf{X}^{'}\mathbf{X})^{-1}\)
    • In R
    ##            [,1]       [,2]
    ## [1,]  1.4259259 -0.5925926
    ## [2,] -0.5925926  0.2592593
  • Determinant of a matrix
    • \(|\mathbf{I}|\)
    • In R
    ##      [,1] [,2] [,3]
    ## [1,]    1    0    0
    ## [2,]    0    1    0
    ## [3,]    0    0    1
    ## [1] 1
  • Quadratic form
    • \(\mathbf{y}^{'}\mathbf{S}\mathbf{y}\)
  • Derivative of a quadratic form (Note \(\mathbf{S}\) is a symmetric matrix; e.g., \(\mathbf{X}^{'}\mathbf{X}\))
    • \(\frac{\partial}{\partial\mathbf{y}}\mathbf{y^{'}\mathbf{S}\mathbf{y}}=2\mathbf{S}\mathbf{y}\)
  • Other useful derivatives
    • \(\frac{\partial}{\partial\mathbf{y}}\mathbf{\mathbf{x^{'}}\mathbf{y}}=\mathbf{x}\)
    • \(\frac{\partial}{\partial\mathbf{y}}\mathbf{\mathbf{X^{'}}\mathbf{y}}=\mathbf{X}\)

2.4 Distribution theory review

2.5 Mathematical model review

  • Mathematical models are deterministic equations that describe the relationship between input variables and an output variable
  • Common types of mathematical models used for spatio-temporal statistics
    • Linear equations
      • Scalar form: \(\mu=\beta_{0}+\beta_{1}x_{1}+\beta_{2}x_{2}+\ldots+\beta_{p}x_{p}\)
      • Vector form: \(\boldsymbol{\mu}=\beta_{0}+\beta_{1}\mathbf{x}_{1}+\beta_{2}\mathbf{x}_{2}+\ldots+\beta_{p}\mathbf{x}_{p}\)
      • Matrix form: \(\boldsymbol{\mu}=\mathbf{X}\boldsymbol{\beta}\)
    • Non-linear equations Scalar form: \(\mu = e^{\beta_{0}+\beta_{1}x_{1}+\beta_{2}x_{2}+\ldots+\beta_{p}x_{p}}\)
    • Difference equations
      • Scalar form: \(\mu_{t+1} = \phi\mu_{t}\)
    • Differential equations
      • Scalar form: \(\frac{d\mu(t)}{dt}=\gamma\mu(t)\)

2.6 Summary and comments

  • The material covered today should be review for you
  • Probability distributions and mathematical models are the building block for most (parametric) statistical models
  • Next class meeting we will build our first statistical model!