2 August 20

2.1 Announcements

  • Assignment #1 due Friday at 5 pm
    • Office hours 9:30 - 10:30 today
  • PDF/PMF handout -Reading Assignment

2.2 Statistical models

  • What is a model?
    • Simplification of something that is real designed to serve a purpose
  • What is a statistical model?
    • Simplification of a real data generating mechanism
    • Constructed from deterministic mathematical equations and Probability density /mass functions
    • Capable of generating data
  • What is the purpose of a statistical model
    • See section 1.2 on pg. 7 and pg. 77 of Wikle et al. (2019)
    • Capable of making predictions, forecasts, and hindcasts
    • Enables statistical inference about observable and unobservable quantities
    • Reliability quantify and communicate uncertainty
      • Example using simple linear regression

2.3 Matrix review

  • Column vectors
    • y(y1,y2,,yn)
    • x(x1,x2,,xn)
    • \boldsymbol{\beta}\equiv(\beta_{1},\beta_{2},\ldots,\beta_{p})^{'}
    • \boldsymbol{1}\equiv(1,1,\ldots,1)^{'}
    • In R
    ##      [,1]
    ## [1,]    1
    ## [2,]    2
    ## [3,]    3
  • Matrices
    • \mathbf{X}\equiv(\mathbf{x}_{1},\mathbf{x}_{2},\ldots,\mathbf{x}_{p})
    • In R
    ##      [,1] [,2]
    ## [1,]    1    4
    ## [2,]    2    5
    ## [3,]    3    6
  • Vector multiplication
    • \mathbf{y}^{'}\mathbf{y}
    • \mathbf{1}^{'}\mathbf{1}
    • \mathbf{1}\mathbf{1}^{'}
    • In R
    ##      [,1]
    ## [1,]   14
  • Matrix by vector multiplication
    • \mathbf{X}^{'}\mathbf{y}
    • In R
    ##      [,1]
    ## [1,]   14
    ## [2,]   32
  • Matrix by matrix multiplication
    • \mathbf{X}^{'}\mathbf{X}
    • In R
    ##      [,1] [,2]
    ## [1,]   14   32
    ## [2,]   32   77
  • Matrix inversion
    • (\mathbf{X}^{'}\mathbf{X})^{-1}
    • In R
    ##            [,1]       [,2]
    ## [1,]  1.4259259 -0.5925926
    ## [2,] -0.5925926  0.2592593
  • Determinant of a matrix
    • |\mathbf{I}|
    • In R
    ##      [,1] [,2] [,3]
    ## [1,]    1    0    0
    ## [2,]    0    1    0
    ## [3,]    0    0    1
    ## [1] 1
  • Quadratic form
    • \mathbf{y}^{'}\mathbf{S}\mathbf{y}
  • Derivative of a quadratic form (Note \mathbf{S} is a symmetric matrix; e.g., \mathbf{X}^{'}\mathbf{X})
    • \frac{\partial}{\partial\mathbf{y}}\mathbf{y^{'}\mathbf{S}\mathbf{y}}=2\mathbf{S}\mathbf{y}
  • Other useful derivatives
    • \frac{\partial}{\partial\mathbf{y}}\mathbf{\mathbf{x^{'}}\mathbf{y}}=\mathbf{x}
    • \frac{\partial}{\partial\mathbf{y}}\mathbf{\mathbf{X^{'}}\mathbf{y}}=\mathbf{X}

2.4 Distribution theory review

2.5 Mathematical model review

  • Mathematical models are deterministic equations that describe the relationship between input variables and an output variable
  • Common types of mathematical models used for spatio-temporal statistics
    • Linear equations
      • Scalar form: \mu=\beta_{0}+\beta_{1}x_{1}+\beta_{2}x_{2}+\ldots+\beta_{p}x_{p}
      • Vector form: \boldsymbol{\mu}=\beta_{0}+\beta_{1}\mathbf{x}_{1}+\beta_{2}\mathbf{x}_{2}+\ldots+\beta_{p}\mathbf{x}_{p}
      • Matrix form: \boldsymbol{\mu}=\mathbf{X}\boldsymbol{\beta}
    • Non-linear equations Scalar form: \mu = e^{\beta_{0}+\beta_{1}x_{1}+\beta_{2}x_{2}+\ldots+\beta_{p}x_{p}}
    • Difference equations
      • Scalar form: \mu_{t+1} = \phi\mu_{t}
    • Differential equations
      • Scalar form: \frac{d\mu(t)}{dt}=\gamma\mu(t)

2.6 Summary and comments

  • The material covered today should be review for you
  • Probability distributions and mathematical models are the building block for most (parametric) statistical models
  • Next class meeting we will build our first statistical model!