1.6 Some common distributions
Definition | Functions | Measures |
---|---|---|
Exponential \(T\sim Exp( \lambda)\) |
|
\(E(T)=\int_0^{+\infty}uf(u) du= \frac{1}{\lambda}\) \(Var(T)=E(T^2)-E(T)^2 = \ldots = \frac{1}{\lambda^2}\) |
Weibull \(T\sim Weib(a,b)\) with \(a\) shape and \(b\) scale |
|
\(E(T)=b\Gamma \left(1+ \frac{1}{a}\right)\) \(Var(T) = b^2 \Gamma \left(1+ \frac{2}{a}\right) - b^2 \left [ \Gamma \left(1+ \frac{1}{a}\right)\right]^2\) where, \(\Gamma(k)\) is the gamma function. \(\Gamma (k) = \int_0^{+\infty} u^{k-1} exp^{-u}du\) |
There are other distributions such as Log-Normal, Log-Logistic, Pareto, Rayleigh, Gomptertz, or even more. For more details see http://data.princeton.edu/pop509/ParametricSurvival.pdf.