References
Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., … Chang, W. (2018). rmarkdown: Dynamic Documents for R (Version 1.10). Retrieved from https://CRAN.R-project.org/package=rmarkdown
Bollerslev, T. (1986). Generalized Autoregressive Conditional Heteroskedasticity. Journal of Econometrics, 31(3), 307–327.
Card, D. (1993). Using geographic variation in college proximity to estimate the return to schooling. National Bureau of Economic Research.
Card, D., & Krueger, A. B. (1994). Minimum Wages and Employment: A Case Study of the Fast-Food Industry in New Jersey and Pennsylvania. The American Economic Review, 84(4), 772–793.
Chow, G. C. (1960). Tests of Equality Between Sets of Coefficients in Two Linear Regressions. Econometrica, 28(3), 591–605.
Cochrane, D., & Orcutt, G. H. (1949). Application of Least Squares Regression to Relationships Containing Auto-Correlated Error Terms. Journal of the American Statistical Association, 44(245), 32–61. doi:10.1080/01621459.1949.10483290
Croissant, Y., Millo, G., & Tappe, K. (2017). plm: Linear Models for Panel Data (Version 1.6-6). Retrieved from https://CRAN.R-project.org/package=plm
Dickey, D. A., & Fuller, W. A. (1979). Distribution of the Estimators for Autoregressive Time Series with a Unit Root. Journal of the American Statistical Association, 74(366), pp. 427–431.
Elliott, G., Rothenberg, T. J., & Stock, J. H. (1996). Efficient Tests for an Autoregressive Unit Root. Econometrica, 64(4), 813–836.
Engle, R. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of united kingdom inflation. Econometrica, 50(4), 987–1007.
Engle, R., & Granger, C. (1987). Co-integration and Error Correction: Representation, Estimation and Testing. Econometrica, 55(2), 251–76.
Genz, A., Bretz, F., Miwa, T., Mi, X., & Hothorn, T. (2018). mvtnorm: Multivariate Normal and t Distributions (Version 1.0-8). Retrieved from https://CRAN.R-project.org/package=mvtnorm
Granger, C. (1969). Investigating Causal Relations by Econometric Models and Cross-Spectral Methods. Econometrica, 37(3), 424–438.
Heiss, F. (2016). Using R for Introductory Econometrics. CreateSpace Independent Publishing Platform. Retrieved from http://www.urfie.net/
Hlavac, M. (2018). stargazer: Well-Formatted Regression and Summary Statistics Tables (Version 5.2.2). Retrieved from https://CRAN.R-project.org/package=stargazer
Hyndman, R., Athanasopoulos, G., Bergmeir, C., Caceres, G., Chhay, L., O’Hara-Wild, M., … Yasmeen, F. (2018). forecast: Forecasting Functions for Time Series and Linear Models (Version 8.4). Retrieved from https://CRAN.R-project.org/package=forecast
Kleiber, C., & Zeileis, A. (2008). Applied Econometrics with R. Springer.
Kleiber, C., & Zeileis, A. (2017). AER: Applied Econometrics with R (Version 1.2-5). Retrieved from https://CRAN.R-project.org/package=AER
MacKinnon, J. G., & White, H. (1985). Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties. Journal of Econometrics, 29(3), 305–325.
Newey, W. K., & West, K. D. (1987). A Simple, Positive Semi-definite, Heteroskedasticity and Autocorrelation Consistent Covariance Matrix. Econometrica, 55(3), 703–08.
Pfaff, B. (2013). vars: VAR Modelling (Version 1.5-2). Retrieved from https://CRAN.R-project.org/package=vars
Pfaff, B. (2016). urca: Unit Root and Cointegration Tests for Time Series Data (Version 1.3-0). Retrieved from https://CRAN.R-project.org/package=urca
Pinheiro, J., Bates, D., & R-core. (2018). nlme: Linear and Nonlinear Mixed Effects Models (Version 3.1-137). Retrieved from https://CRAN.R-project.org/package=nlme
Quandt, R. E. (1960). Tests of the Hypothesis That a Linear Regression System Obeys Two Separate Regimes. Journal of the American Statistical Association, 55(290), 324–330. doi:10.1080/01621459.1960.10482067
R Core Team. (2018). R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved from https://www.R-project.org/
Ripley, B. (2018). MASS: Support Functions and Datasets for Venables and Ripley’s MASS (Version 7.3-50). Retrieved from https://CRAN.R-project.org/package=MASS
Ryan, J. A., & Ulrich, J. M. (2018). quantmod: Quantitative Financial Modelling Framework (Version 0.4-13). Retrieved from https://CRAN.R-project.org/package=quantmod
Spada, S. (2017). orcutt: Estimate Procedure in Case of First Order Autocorrelation (Version 2.2). Retrieved from https://CRAN.R-project.org/package=orcutt
Stigler, M., & Quast, B. (2015). rddtools: Toolbox for Regression Discontinuity Design (’RDD’) (Version 0.4.0). Retrieved from https://CRAN.R-project.org/package=rddtools
Stock, J., & Watson, M. (2015). Introduction to Econometrics, Third Update, Global Edition. Pearson Education Limited.
Venables, W. N., & Smith, D. M. (2010). An Introduction to R. Retrieved from https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf
White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity. Econometrica, 48(4), pp. 817–838.
Wickham, H. (2017). scales: Scale Functions for Visualization (Version 0.5.0). Retrieved from https://CRAN.R-project.org/package=scales
Wickham, H., & Bryan, J. (2018). readxl: Read Excel Files (Version 1.1.0). Retrieved from https://CRAN.R-project.org/package=readxl
Wickham, H., & Henry, L. (2018). tidyr: Easily Tidy Data with ’spread()’ and ’gather()’ Functions (Version 0.8.1). Retrieved from https://CRAN.R-project.org/package=tidyr
Wickham, H., François, R., Henry, L., & Müller, K. (2018). dplyr: A Grammar of Data Manipulation (Version 0.7.6). Retrieved from https://CRAN.R-project.org/package=dplyr
Wooldridge, J. (2016). Introductory Econometrics (Sixth). Cengage Learning.
Wuertz, D., Setz, T., Chalabi, Y., Boudt, C., Chausse, P., & Miklovac, M. (2017). fGarch: Rmetrics - Autoregressive Conditional Heteroskedastic Modelling (Version 3042.83). Retrieved from https://CRAN.R-project.org/package=fGarch
Xie, Y. (2018a). bookdown: Authoring Books and Technical Documents with R Markdown (Version 0.7.20). Retrieved from https://github.com/rstudio/bookdown
Xie, Y. (2018b). knitr: A General-Purpose Package for Dynamic Report Generation in R (Version 1.20). Retrieved from https://CRAN.R-project.org/package=knitr
Zeileis, A. (2016). dynlm: Dynamic Linear Regression (Version 0.3-5). Retrieved from https://CRAN.R-project.org/package=dynlm