6 Day 6 (June 10)
6.1 Announcements
- Assignment 1 is graded
- General grading scheme
 - General comments about reproducibility
- Too much computer code
 - No or not enough computer code
 - Computer code formatting (e.g., running over the page edge)
 
 
 - Questions about assignment 2
 
6.2 Estimation
- Three options to estimate \(\boldsymbol{\beta}\)
- Minimize a loss function
 - Maximize a likelihood function
 - Find the posterior distribution
 - Each option requires different assumptions
 
 
6.3 Loss function approach
Using modern (circa 1970’s) optimization techniques
y <- c(0.16,2.82,2.24) x <- c(1,2,3) optim(par=c(0,0),method = c("Nelder-Mead"),fn=function(beta){sum((y-(beta[1]+beta[2]*x))^2)})## $par ## [1] -0.3399977 1.0399687 ## ## $value ## [1] 1.7496 ## ## $counts ## function gradient ## 61 NA ## ## $convergence ## [1] 0 ## ## $message ## NULLUsing modern and user friendly statistical computing software
## ## Call: ## lm(formula = y ~ x, data = df) ## ## Coefficients: ## (Intercept) x ## -0.34 1.04Live example