33 Day 32 (July 22)

33.1 Announcements

  • Final presentations this week!

33.2 Random effects

  • Conditional, marginal, and joint distributions

    • Conditional distribution: “\(\mathbf{y}\) given \(\boldsymbol{\beta}\)\[\mathbf{y}|\boldsymbol{\beta}\sim\text{N}(\mathbf{X}\boldsymbol{\beta},\sigma_{\varepsilon}^{2}\mathbf{I})\] This is also sometimes called the data model.
    • Marginal distribution of \(\boldsymbol{\beta}\) \[\beta\sim\text{N}(\mathbf{0},\sigma_{\beta}^{2}\mathbf{I})\] This is also called the parameter model.
    • Joint distribution \([\mathbf{y}|\boldsymbol{\beta}][\boldsymbol{\beta}]\)
  • Estimation for the linear model with random effects

    • By maximizing the joint likelihood
      • Write out the likelihood function \[\mathcal{L}(\boldsymbol{\beta},\sigma_{\varepsilon},\sigma_{\beta}^{2})=\frac{1}{(2\pi)^{-\frac{n}{2}}}|\sigma^{2}_{\varepsilon}\mathbf{I}|^{-\frac{1}{2}}\text{exp}\bigg{(}-\frac{1}{2}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})^{\prime}(\sigma^{2}_{\varepsilon}\mathbf{I})^{-1}(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\bigg{)}\times\\\frac{1}{(2\pi)^{-\frac{p}{2}}}|\sigma^{2}_{\beta}\mathbf{I}|^{-\frac{1}{2}}\text{exp}\bigg{(}-\frac{1}{2}\boldsymbol{\beta}^{\prime}(\sigma^{2}_{\beta}\mathbf{I})^{-1}\boldsymbol{\beta}\bigg{)}\]
      • Maximizing the log-likelihood function w.r.t. gives \(\boldsymbol{\beta}\) gives \[\hat{\boldsymbol{\beta}}=\big{(}\mathbf{X}^{'}\mathbf{X}+\frac{\sigma^{2}_{\varepsilon}}{\sigma^{2}_{\beta}}\mathbf{I}\big{)}^{-1}\mathbf{X}^{'}\mathbf{y}\]
  • Example eye temperature data set for Eurasian blue tit

    df.et <- read.table("https://www.dropbox.com/s/bo11n66cezdnbia/eyetemp.txt?dl=1")
    names(df.et) <- c("id","sex","date","time","event","airtemp","relhum","sun","bodycond","eyetemp")
    df.et$id <- as.factor(df.et$id)
    df.et$id.num <- as.numeric(df.et$id)
    
    ind.means <- aggregate(eyetemp ~ id.num,df.et, FUN=base::mean)
    plot(df.et$id.num,df.et$eyetemp,xlab="Individual",ylab="Eye temperature")
    points(ind.means,pch="x",col="gold",cex=1.5)

    # Standard "fixed effects" linear regression model
    m1 <- lm(eyetemp~as.factor(id.num)-1,data=df.et)
    summary(m1)
    ## 
    ## Call:
    ## lm(formula = eyetemp ~ as.factor(id.num) - 1, data = df.et)
    ## 
    ## Residuals:
    ##     Min      1Q  Median      3Q     Max 
    ## -3.7378 -0.5750  0.1507  0.6622  3.0286 
    ## 
    ## Coefficients:
    ##                     Estimate Std. Error t value Pr(>|t|)    
    ## as.factor(id.num)1   29.3423     0.1972  148.77   <2e-16 ***
    ## as.factor(id.num)2   28.8735     0.1725  167.41   <2e-16 ***
    ## as.factor(id.num)3   27.5458     0.2053  134.19   <2e-16 ***
    ## as.factor(id.num)4   28.0156     0.1778  157.59   <2e-16 ***
    ## as.factor(id.num)5   30.8188     0.1211  254.56   <2e-16 ***
    ## as.factor(id.num)6   32.6486     0.1700  192.06   <2e-16 ***
    ## as.factor(id.num)7   29.6800     0.3180   93.33   <2e-16 ***
    ## as.factor(id.num)8   29.0000     0.2789  103.97   <2e-16 ***
    ## as.factor(id.num)9   29.4378     0.1499  196.36   <2e-16 ***
    ## as.factor(id.num)10  29.7667     0.1836  162.12   <2e-16 ***
    ## as.factor(id.num)11  28.4714     0.2195  129.74   <2e-16 ***
    ## as.factor(id.num)12  28.8793     0.1867  154.64   <2e-16 ***
    ## as.factor(id.num)13  30.1500     0.7111   42.40   <2e-16 ***
    ## as.factor(id.num)14  30.6500     0.7111   43.10   <2e-16 ***
    ## ---
    ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    ## 
    ## Residual standard error: 1.006 on 358 degrees of freedom
    ## Multiple R-squared:  0.9989, Adjusted R-squared:  0.9989 
    ## F-statistic: 2.31e+04 on 14 and 358 DF,  p-value: < 2.2e-16
    plot(df.et$id.num,df.et$eyetemp,xlab="Individual",ylab="Expected eye temperature",col="white")
    points(1:14,coef(m1),pch=20,col="black",cex=1)
    segments (1:14,confint(m1)[,1],1:14,confint(m1)[,2] ,lwd=2,lty=1)

    # Random effects regression model (using nlme package; difficult to get confidence interval)
    library(nlme)
    m2 <- lme(fixed = eyetemp ~ 1,random= list(id = pdIdent(~id-1)),data=df.et,method="ML")#summary(m2)
    #predict(m2,level=1,newdata=data.frame(id=unique(df.et$id)))
    
    # Random effects regression model (mgcv package)
    library(mgcv)
    m2 <- gam(eyetemp ~ 1+s(id,bs="re"),data=df.et,method="ML")
    
    plot(df.et$id.num,df.et$eyetemp,xlab="Individual",ylab="Expected eye temperature",col="white")
    points(1:14-0.15,coef(m1),pch=20,col="black",cex=1)
    segments (1:14-0.15,confint(m1)[,1],1:14-0.15,confint(m1)[,2] ,lwd=2,lty=1)
    pred <- predict(m2,newdata=data.frame(id=unique(df.et$id)),se.fit=TRUE)
    pred$lci <- pred$fit - 1.96*pred$se.fit
    pred$uci <- pred$fit + 1.96*pred$se.fit
    points(1:14+0.15,pred$fit,pch=20,col="green",cex=1)
    segments (1:14+0.15,pred$lci,1:14+0.15,pred$uci,lwd=2,lty=1,col="green")
    abline(a=coef(m2)[1],b=0,col="grey")

  • Summary

    • Take home message
      • Treating \(\boldsymbol{\beta}\) as a random effect “shrinks” the estimates of \(\boldsymbol{\beta}\) closer to zero.
    • Requires an extra assumption \(\boldsymbol{\beta}\sim\text{N}(\mathbf{0},\sigma_{\beta}^{2}\mathbf{I})\)
      • Penalty
      • Random effect
      • This called a prior distribution in Bayesian statistics

33.3 Generalized linear models

  • The generalized linear model framework \[\mathbf{y} \sim[\mathbf{\mathbf{y}|\boldsymbol{\mu},\psi]}\] \[g(\boldsymbol{\mu})=\mathbf{X}\boldsymbol{\beta}\]

    • \([\mathbf{y}|\boldsymbol{\mu},\psi]\) is a distribution from the exponential family (e.g., normal, Poisson, binomial) with expected value \(\boldsymbol{\mu}\) and dispersion parameter \(\psi\).
      • Example \([\mathbf{y}|\boldsymbol{\mu},\psi]=\text{N}\left(\boldsymbol{\mu},\psi\mathbf{I}\right)\)
      • Example \([\mathbf{\mathbf{y}|\boldsymbol{\mu},\psi]}=\text{Poisson}\left(\boldsymbol{\mu}\right)\)
      • Example \([\mathbf{\mathbf{y}|\boldsymbol{\mu},\psi]}=\text{gamma}\left(\boldsymbol{\mu},\psi\right)\)
  • Estimation

    • Use numerical maximization to estimate
    • \(\hat{\boldsymbol{\beta}}=(\mathbf{X}^{\prime}\mathbf{X})^{-1}\mathbf{X}^{\prime}\mathbf{y}\) is NOT the MLE for the glm
    • Inference is based on asymptotic properties of MLE.
    • Example: Challenger data
      • The statistical model: \[\mathbf{y}\sim\text{binomial}(6,\mathbf{p})\] \[\text{logit}(\mathbf{p})=\mathbf{X}\boldsymbol{\beta}.\]
      • The PMF for the binomial distribution \[\binom{N}{y}p^{y}(1-p)^{N-y}\]
      • Write out the likelihood function \[\mathcal{L}(\boldsymbol{\beta})=\prod_{i=1}^n\binom{6}{y_i}p_i^{y_i}(1-p_i)^{6-y_i}\]
    • Maximize the log-likelihood function
    challenger <- read.csv("https://www.dropbox.com/s/ezxj8d48uh7lzhr/challenger.csv?dl=1")
    
    plot(challenger$Temp,challenger$O.ring,xlab="Temperature",ylab="Number of incidents",xlim=c(10,80),ylim=c(0,6))    

    y <- challenger$O.ring
    X <- model.matrix(~Temp,data= challenger)
    
    nll <- function(beta){
      p <- 1/(1+exp(-X%*%beta)) # Inverse of logit link function
      -sum(dbinom(y,6,p,log=TRUE)) # Sum of the log likelihood for each observation 
      }
    est <- optim(par=c(0,0),fn=nll,hessian=TRUE)
    
    # MLE of beta
    est$par
    ## [1]  6.751192 -0.139703
    # Var(beta.hat)
    diag(solve(est$hessian))
    ## [1] 8.830866682 0.002145791
    # Std.Error
    diag(solve(est$hessian))^0.5
    ## [1] 2.97167742 0.04632268
    • Using the glm() function
    m1 <- glm(cbind(challenger$O.ring,6-challenger$O.ring) ~ Temp, family = binomial(link = "logit"),data=challenger)
    summary(m1)
    ## 
    ## Call:
    ## glm(formula = cbind(challenger$O.ring, 6 - challenger$O.ring) ~ 
    ##     Temp, family = binomial(link = "logit"), data = challenger)
    ## 
    ## Coefficients:
    ##             Estimate Std. Error z value Pr(>|z|)   
    ## (Intercept)  6.75183    2.97989   2.266  0.02346 * 
    ## Temp        -0.13971    0.04647  -3.007  0.00264 **
    ## ---
    ## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
    ## 
    ## (Dispersion parameter for binomial family taken to be 1)
    ## 
    ##     Null deviance: 28.761  on 22  degrees of freedom
    ## Residual deviance: 19.093  on 21  degrees of freedom
    ## AIC: 36.757
    ## 
    ## Number of Fisher Scoring iterations: 5
    • Prediction
      • We can get prediction using \(\mathbf{X}\hat{\boldsymbol{\beta}}\) or the inverse of the logit link function \(\hat{\boldsymbol{\mu}}=\frac{1}{1+e^{-\mathbf{X}\hat{\boldsymbol{\beta}}}}\)
      • Confidence intervals for \(\mathbf{X}\hat{\boldsymbol{\beta}}\) are straightforward
      • Confidence intervals for \(\hat{\boldsymbol{\mu}}=\frac{1}{1+e^{-\mathbf{X}\hat{\boldsymbol{\beta}}}}\) are not straightforward because of the nonlinear transformation of \(\hat{\boldsymbol{\beta}}\)
    beta.hat <- coef(m1)
    
    new.temp <- seq(0,80,by=0.01)
    X.new <- model.matrix(~new.temp)
    
    mu.hat <- (1/(1+exp(-X.new%*%beta.hat)))
    
    plot(challenger$Temp,challenger$O.ring,xlab="Temperature",ylab="Number of incidents",xlim=c(10,80),ylim=c(0,6))
    points(new.temp,6*mu.hat,typ="l",col="red")

    • Predictive distribution
    library(mosaic)
    
    predict.bs <- function(){
      m1 <- glm(cbind(O.ring,6-O.ring) ~ Temp, family = binomial(link = "logit"),data=resample(challenger))
      p <- predict(m1,newdata=data.frame(Temp=31),type="response")
      y <- rbinom(1,6,p)
      y
    }
    
    bootstrap <- do(1000)*predict.bs()
    
    par(mar = c(5, 4, 7, 2))
    hist(bootstrap[,1], col = "grey", xlab = "Year", main = "Empirical distribution of O-ring failures at 31 degrees", freq = FALSE,right=FALSE,breaks=c(-0.5:6.5))

    # 95% equal-tailed CI based on percentiles of the empirical distribution
    quantile(bootstrap[,1], prob = c(0.025, 0.975))
    ##  2.5% 97.5% 
    ##     0     6
    # Proability of 6 O-rings failing
    length(which(bootstrap[,1]==6))/dim(bootstrap)[1]
    ## [1] 0.53
  • Summary

    • The generalized linear model useful when the distributional assumptions of linear model are untenable.
      • Small counts
      • Binary data
    • Two cultures
      • All distributions are approximations of a unknown data generating process so why does it matter? Use the linear model because it is easier to understand.
      • Personal philosophy
        • Picking a distribution whose support matches that of the data gets closer to the etiology of the process that generated the data.
      • Easier for me to think scientifically about the process