16 Day 16 (June 25)

16.1 Announcements

  • Read Ch. 4 in linear models with R (prediction)

  • Where we are at in the class

  • In-class work day on Wednesday

    • Goal-I’d like to see your data!

16.2 Prediction

  • My definition of inference and prediction
    • Inference = Learning about what you can’t observe given what you did observe (and some assumptions)
    • Prediction = Learning about what you didn’t observe given what you did observe (and some assumptions)
  • Prediction (Ch. 4 in Faraway (2014))
    • Derived quantity
      • \(\mathbf{x}^{\prime}_0\) is a \(1\times p\) matrix of covariates (could be a row \(\mathbf{X}\) or completely new values of the predictors)
      • Use \(\widehat{\text{E}(y_0)}=\mathbf{x}^{\prime}_0\hat{\boldsymbol{\beta}}\)
    • Example
      • Predicting the number of whooping cranes
    url <- "https://www.dropbox.com/s/8grip274233dr9a/Butler%20et%20al.%20Table%201.csv?dl=1"
    df1 <- read.csv(url)
    
    plot(df1$Winter, df1$N, xlab = "Year", ylab = "Population size",
    xlim=c(1940,2021),ylim = c(0, 300), typ = "b", lwd = 1.5, pch = "*")
    • What model should we use?
    m1 <- lm(N ~ Winter + I(Winter^2),data=df1)
    Ey.hat <- predict(m1) 
    
    plot(df1$Winter, df1$N, xlab = "Year", ylab = "Population size",
    xlim=c(1940,2021),ylim = c(0, 300), typ = "b", lwd = 1.5, pch = "*")
    points(df1$Winter,Ey.hat,typ="l",col="red")

16.3 Intervals for predictions

  • Expected value and variance of \(\mathbf{x}^{\prime}_0\hat{\boldsymbol{\beta}}\)

  • Confidence interval \(\text{P}\left(\mathbf{x}^{\prime}_0\hat{\boldsymbol{\beta}}-t_{\alpha/2,n-p}\sqrt{\hat{\sigma^{2}}\mathbf{x}_{0}^{'}(\mathbf{X}^{'}\mathbf{X})^{-1}\mathbf{x}_{0}}<\mathbf{x}^{\prime}_0\boldsymbol{\beta}<\mathbf{x}^{\prime}_0\hat{\boldsymbol{\beta}}+t_{\alpha/2,n-p}\sqrt{\hat{\sigma^{2}}\mathbf{x}_{0}^{'}(\mathbf{X}^{'}\mathbf{X})^{-1}\mathbf{x}_{0}}\right)\\=1-\alpha\)

    • The 95% CI is \(\mathbf{x}^{\prime}_0\hat{\boldsymbol{\beta}}\pm t_{\alpha/2,n-p}\sqrt{\hat{\sigma^{2}}\mathbf{x}_{0}^{'}(\mathbf{X}^{'}\mathbf{X})^{-1}\mathbf{x}_{0}}\)
    • In R
    Ey.hat <- predict(m1,interval="confidence") 
    head(Ey.hat)
    ##        fit      lwr      upr
    ## 1 29.35980 21.43774 37.28186
    ## 2 28.84122 21.42928 36.25315
    ## 3 28.47610 21.54645 35.40575
    ## 4 28.26444 21.78812 34.74075
    ## 5 28.20624 22.15308 34.25940
    ## 6 28.30150 22.64000 33.96300
    plot(df1$Winter, df1$N, xlab = "Year", ylab = "Population size",
    xlim=c(1940,2021),ylim = c(0, 300), typ = "b", lwd = 1.5, pch = "*")
    points(df1$Winter,Ey.hat[,1],typ="l",col="red")
    points(df1$Winter,Ey.hat[,2],typ="l",col="red",lty=2)
    points(df1$Winter,Ey.hat[,3],typ="l",col="red",lty=2)

    • Why are there so many data points that fall outside of the 95% CIs?
  • Prediction intervals vs. Confidence intervals

    • CIs for \(\widehat{\text{E}(y_0)}=\mathbf{x}^{\prime}_0\hat{\boldsymbol{\beta}}\)

    • How to interpret \(\widehat{\text{E}(y_0)}\)

    • What if I wanted to predict \(y_0\)?

      • \(y_0\sim\text{N}(\mathbf{x}^{\prime}_0\hat{\boldsymbol{\beta}},\hat{\sigma}^2)\)
    • Expected value and variance of \(y_0\)

    • Prediction interval \(\text{P}\left(\mathbf{x}^{\prime}_0\hat{\boldsymbol{\beta}}-t_{\alpha/2,n-p}\sqrt{\hat{\sigma^{2}}(1+\mathbf{x}_{0}^{'}(\mathbf{X}^{'}\mathbf{X})^{-1}\mathbf{x}_{0})}<y_0<\mathbf{x}^{\prime}_0\hat{\boldsymbol{\beta}}+t_{\alpha/2,n-p}\sqrt{\hat{\sigma^{2}}(\mathbf{x}_{0}^{'}(\mathbf{X}^{'}\mathbf{X})^{-1}\mathbf{x}_{0})}\right)=\\1-\alpha\)

    • The 95% PI is \(\mathbf{x}^{\prime}_0\hat{\boldsymbol{\beta}}\pm t_{\alpha/2,n-p}\sqrt{\hat{\sigma^{2}}(1+\mathbf{x}_{0}^{'}(\mathbf{X}^{'}\mathbf{X})^{-1}\mathbf{x}_{0})}\)

    • Example in R

    y.hat <- predict(m1,interval="prediction") 
    head(y.hat)
    ##        fit      lwr      upr
    ## 1 29.35980 6.630220 52.08938
    ## 2 28.84122 6.284368 51.39807
    ## 3 28.47610 6.073089 50.87910
    ## 4 28.26444 5.997480 50.53139
    ## 5 28.20624 6.058655 50.35382
    ## 6 28.30150 6.257741 50.34526
    plot(df1$Winter, df1$N, xlab = "Year", ylab = "Population size",
    xlim=c(1940,2021),ylim = c(0, 300), typ = "b", lwd = 1.5, pch = "*")
    points(df1$Winter,y.hat[,1],typ="l",col="red")
    points(df1$Winter,y.hat[,2],typ="l",col="red",lty=2)
    points(df1$Winter,y.hat[,3],typ="l",col="red",lty=2)

  • Live example

Literature cited

Faraway, J. J. 2014. Linear Models with r. CRC Press.