20  Equations

20.1 Population Mean

μ=xin

20.2 Sample Mean

x¯=xin

20.3 Standard error of the mean

$ _{m} = $

20.4 Pearson’s Correlation

ρ=cov(X,Y)σxσy

and estimate:

r=i=1n(xix)(yiy)i=1n(xix)2i=1n(yiy)2

20.5 Independent t-test

t=x1¯x2¯sp2n1+sp2n2

sp2=Σ(xi1x1¯)2+Σ(xi2x2¯)2n1+n22

20.6 Repeared t-test

t=Δxisediff

sed=(dixdiff)21Nn

20.7 Cohen’s d

d=x1x2spooled

20.8 One Way ANOVA

SST=SSB+SSE

SST=i=1n(xix)2

dfT=N1

SSE=(xijxj)2

dfE=Nk

SSB=j=1njnj(xjxoverall)2

dfK=k1

MSX=SSxdfx

F=MSBMSE

20.9 Eta^2

η2=SSBSST

20.10 Tukey’s HSD

T=q×MSEn

20.11 Repeated ANOVA

SST=i=1n(xixgrand)2 with N1 degrees of freedom

SST=soverall2(N1)

SSW=i=1,t=1n(xitxi)2

where xit is the score for individual i at time t and xi is the mean for individual i across all conditions. If you can quickly get the variances, you could also use the formula:

SSW=i=1nsi2(nt1)

dfw=ni(dfb)

dfb=k1

SSM=j=1njnj(xjxoverall)2

SSE=SSWSSB

dfe=dfwdfb

MSB, MSE, and F, same as One-way ANOVA

20.12 Chi-Square

χ2=i=1,j=1n(OijEij)2Eij

where:

  • i is the row number
  • j is the column number
  • Oij is the observed frequency
  • Eij is the expected frequency and
  • Eij=nrow×ncolN

df=(nrow1)×(ncol1)

Cramer’s V

V=χ2/nmin(r1,c1)

20.12.1 Pearson’s Residual

res=OiEiEi