20  Equations

20.1 Population Mean

\(\mu = \frac{\sum{x_i}}{n}\)

20.2 Sample Mean

\(\bar{x} = \frac{\sum{x_i}}{n}\)

20.3 Standard error of the mean

$ _{m} = $

20.4 Pearson’s Correlation

\(\rho = \frac{\text{cov}(X,Y)}{\sigma_x \sigma_y}\)

and estimate:

\(r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2\sum_{i=1}^{n}(y_i - \overline{y})^2}}\)

20.5 Independent t-test

\(t = \frac{\bar{x_1} - \bar{x_2}} {\sqrt{\frac{s^2_p}{n_1}+\frac{s^2_p}{n_2}}}\)

\(s^2_p = \frac{\Sigma(x_{i1}-\bar{x_1})^2+\Sigma(x_{i2}-\bar{x_2})^2}{n_1+n_2-2}\)

20.6 Repeared t-test

\(t = \frac{\Delta{\overline{x}_i}}{se_{diff}}\)

\(se_d = \frac{\sum(d_i-\overline{x}_{diff})^2\frac{1}{N}}{\sqrt{n}}\)

20.7 Cohen’s d

\(d=\frac{\overline{x}_1-\overline{x}_2}{s_{pooled}}\)

20.8 One Way ANOVA

\(SST = SSB + SSE\)

\(SST = \sum_{i=1}^n(x_i-\overline{x})^2\)

\(df_T=N-1\)

\(SSE = \sum(x_{ij}-\overline{x}_j)^2\)

\(df_E=N-k\)

\(SSB = \sum_{j=1}^{n_j}{n_j}(\overline{x}_j-\overline{x}_{overall})^2\)

\(df_K=k-1\)

\(MSX=\frac{SS_x}{df_x}\)

\(F=\frac{MSB}{MSE}\)

20.9 Eta^2

\(\eta^2 = \frac{SSB}{SST}\)

20.10 Tukey’s HSD

\(T = q\times\sqrt{\frac{MSE}{n}}\)

20.11 Repeated ANOVA

\(SST=\sum_{i=1}^n(x_i-\overline{x}_{grand})^2\) with \(N-1\) degrees of freedom

\(SST=s_{overall}^2(N-1)\)

\(SSW=\sum_{i=1,t=1}^n(x_{it}-\overline{x}_{i})^2\)

where \(x_{it}\) is the score for individual \(i\) at time \(t\) and \(\overline{x}_{i}\) is the mean for individual \(i\) across all conditions. If you can quickly get the variances, you could also use the formula:

\(SSW=\sum_{i=1}^ns_{i}^2({n_{t}-1)}\)

\(df_{w}=n_i(df_{b})\)

\(df_{b}=k-1\)

\(SSM = \sum_{j=1}^{n_j}{n_j}(\overline{x}_j-\overline{x}_{overall})^2\)

\(SSE=SSW-SSB\)

\(df_{e}=df_{w}-df_{b}\)

\(MSB\), \(MSE\), and \(F\), same as One-way ANOVA

20.12 Chi-Square

\(\chi^2=\sum^n_{i=1, j=1}\frac{(O_{ij}-E_{ij})^2}{E_{ij}}\)

where:

  • i is the row number
  • j is the column number
  • \(O_{ij}\) is the observed frequency
  • \(E_{ij}\) is the expected frequency and
  • \(E_{ij}=\frac{n_{row}\times n_{col}}{N}\)

\(df=(n_{row}-1) \times (n_{col}-1)\)

Cramer’s V

\(V=\sqrt{\frac{\chi^2/n}{min(r-1, c-1)}}\)

20.12.1 Pearson’s Residual

\(res=\frac{O_i-E_i}{\sqrt{E_i}}\)