20 Equations
20.1 Population Mean
\(\mu = \frac{\sum{x_i}}{n}\)
20.2 Sample Mean
\(\bar{x} = \frac{\sum{x_i}}{n}\)
20.3 Standard error of the mean
$ _{m} = $
20.4 Pearson’s Correlation
\(\rho = \frac{\text{cov}(X,Y)}{\sigma_x \sigma_y}\)
and estimate:
\(r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2\sum_{i=1}^{n}(y_i - \overline{y})^2}}\)
20.5 Independent t-test
\(t = \frac{\bar{x_1} - \bar{x_2}} {\sqrt{\frac{s^2_p}{n_1}+\frac{s^2_p}{n_2}}}\)
\(s^2_p = \frac{\Sigma(x_{i1}-\bar{x_1})^2+\Sigma(x_{i2}-\bar{x_2})^2}{n_1+n_2-2}\)
20.6 Repeared t-test
\(t = \frac{\Delta{\overline{x}_i}}{se_{diff}}\)
\(se_d = \frac{\sum(d_i-\overline{x}_{diff})^2\frac{1}{N}}{\sqrt{n}}\)
20.7 Cohen’s d
\(d=\frac{\overline{x}_1-\overline{x}_2}{s_{pooled}}\)
20.8 One Way ANOVA
\(SST = SSB + SSE\)
\(SST = \sum_{i=1}^n(x_i-\overline{x})^2\)
\(df_T=N-1\)
\(SSE = \sum(x_{ij}-\overline{x}_j)^2\)
\(df_E=N-k\)
\(SSB = \sum_{j=1}^{n_j}{n_j}(\overline{x}_j-\overline{x}_{overall})^2\)
\(df_K=k-1\)
\(MSX=\frac{SS_x}{df_x}\)
\(F=\frac{MSB}{MSE}\)
20.9 Eta^2
\(\eta^2 = \frac{SSB}{SST}\)
20.10 Tukey’s HSD
\(T = q\times\sqrt{\frac{MSE}{n}}\)
20.11 Repeated ANOVA
\(SST=\sum_{i=1}^n(x_i-\overline{x}_{grand})^2\) with \(N-1\) degrees of freedom
\(SST=s_{overall}^2(N-1)\)
\(SSW=\sum_{i=1,t=1}^n(x_{it}-\overline{x}_{i})^2\)
where \(x_{it}\) is the score for individual \(i\) at time \(t\) and \(\overline{x}_{i}\) is the mean for individual \(i\) across all conditions. If you can quickly get the variances, you could also use the formula:
\(SSW=\sum_{i=1}^ns_{i}^2({n_{t}-1)}\)
\(df_{w}=n_i(df_{b})\)
\(df_{b}=k-1\)
\(SSM = \sum_{j=1}^{n_j}{n_j}(\overline{x}_j-\overline{x}_{overall})^2\)
\(SSE=SSW-SSB\)
\(df_{e}=df_{w}-df_{b}\)
\(MSB\), \(MSE\), and \(F\), same as One-way ANOVA
20.12 Chi-Square
\(\chi^2=\sum^n_{i=1, j=1}\frac{(O_{ij}-E_{ij})^2}{E_{ij}}\)
where:
- i is the row number
- j is the column number
- \(O_{ij}\) is the observed frequency
- \(E_{ij}\) is the expected frequency and
- \(E_{ij}=\frac{n_{row}\times n_{col}}{N}\)
\(df=(n_{row}-1) \times (n_{col}-1)\)
Cramer’s V
\(V=\sqrt{\frac{\chi^2/n}{min(r-1, c-1)}}\)
20.12.1 Pearson’s Residual
\(res=\frac{O_i-E_i}{\sqrt{E_i}}\)