2.6 Applying the Epicycle of Analysis Process
Before we discuss a couple of examples, let’s review the three steps to use for each core data analysis activity. These are :
Setting expectations,
Collecting information (data), comparing the data to your expectations, and if the expectations don’t match,
Revising your expectations or fixing the data so that your expectations and the data match.
2.6.1 Example: Asthma prevalence in the U.S.
Let’s apply the “data analysis epicycle” to a very basic example. Let’s say your initial question is to determine the prevalence of asthma among adults, because your company wants to understand how big the market might be for a new asthma drug. You have a general question that has been identified by your boss, but need to: (1) sharpen the question, (2) explore the data, (3) build a statistical model, (4) interpret the results, and (5) communicate the results. We’ll apply the “epicycle” to each of these five core activities.
For the first activity, refining the question, you would first develop your expectations of the question, then collect information about the question and determine if the information you collect matches your expectations, and if not, you would revise the question. Your expectations are that the answer to this question is unknown and that the question is answerable. A literature and internet search, however, reveal that this question has been answered (and is continually answered by the Centers for Disease Control (CDC)), so you reconsider the question since you can simply go to the CDC website to get recent asthma prevalence data.
You inform your boss and initiate a conversation that reveals that any new drug that was developed would target those whose asthma was not controlled with currently available medication, so you identify a better question, which is “how many people in the United States have asthma that is not currently controlled, and what are the demographic predictors of uncontrolled asthma?” You repeat the process of collecting information to determine if your question is answerable and is a good one, and continue this process until you are satisfied that you have refined your question so that you have a good question that can be answered with available data.
Let’s assume that you have identified a data source that can be downloaded from a website and is a sample that represents the United States adult population, 18 years and older. The next activity is exploratory data analysis, and you start with the expectation that when you inspect your data that there will be 10,123 rows (or records), each representing an individual in the US as this is the information provided in the documentation, or codebook, that comes with the dataset. The codebook also tells you that there will be a variable indicating the age of each individual in the dataset.
When you inspect the data, though, you notice that there are only 4,803 rows, so return to the codebook to confirm that your expectations are correct about the number of rows, and when you confirm that your expectations are correct, you return to the website where you downloaded the files and discover that there were two files that contained the data you needed, with one file containing 4,803 records and the second file containing the remaining 5,320 records. You download the second file and read it into your statistical software package and append the second file to the first.
Now you have the correct number of rows, so you move on to determine if your expectations about the age of the population matches your expectations, which is that everyone is 18 years or older. You summarize the age variable, so you can view the minimum and maximum values and find that all individuals are 18 years or older, which matches your expectations. Although there is more that you would do to inspect and explore your data, these two tasks are examples of the approach to take. Ultimately, you will use this data set to estimate the prevalence of uncontrolled asthma among adults in the US.
The third activity is building a statistical model, which is needed in order to determine the demographic characteristics that best predict that someone has uncontrolled asthma. Statistical models serve to produce a precise formulation of your question so that you can see exactly how you want to use your data, whether it is to estimate a specific parameter or to make a prediction. Statistical models also provide a formal framework in which you can challenge your findings and test your assumptions.
Now that you have estimated the prevalence of uncontrolled asthma among US adults and determined that age, gender, race, body mass index, smoking status, and income are the best predictors of uncontrolled asthma available, you move to the fourth core activity, which is interpreting the results. In reality, interpreting results happens along with model building as well as after you’ve finished building your model, but conceptually they are distinct activities.
Let’s assume you’ve built your final model and so you are moving on to interpreting the findings of your model. When you examine your final predictive model, initially your expectations are matched as age, African American/black race, body mass index, smoking status, and low income are all positively associated with uncontrolled asthma.
However, you notice that female gender is inversely associated with uncontrolled asthma, when your research and discussions with experts indicate that among adults, female gender should be positively associated with uncontrolled asthma. This mismatch between expectations and results leads you to pause and do some exploring to determine if your results are indeed correct and you need to adjust your expectations or if there is a problem with your results rather than your expectations. After some digging, you discover that you had thought that the gender variable was coded 1 for female and 0 for male, but instead the codebook indicates that the gender variable was coded 1 for male and 0 for female. So the interpretation of your results was incorrect, not your expectations. Now that you understand what the coding is for the gender variable, your interpretation of the model results matches your expectations, so you can move on to communicating your findings.
Lastly, you communicate your findings, and yes, the epicycle applies to communication as well. For the purposes of this example, let’s assume you’ve put together an informal report that includes a brief summary of your findings. Your expectation is that your report will communicate the information your boss is interested in knowing. You meet with your boss to review the findings and she asks two questions: (1) how recently the data in the dataset were collected and (2) how changing demographic patterns projected to occur in the next 5-10 years would be expected to affect the prevalence of uncontrolled asthma. Although it may be disappointing that your report does not fully meet your boss’s needs, getting feedback is a critical part of doing a data analysis, and in fact, we would argue that a good data analysis requires communication, feedback, and then actions in response to the feedback.
Although you know the answer about the years when the data were collected, you realize you did not include this information in your report, so you revise the report to include it. You also realize that your boss’s question about the effect of changing demographics on the prevalence of uncontrolled asthma is a good one since your company wants to predict the size of the market in the future, so you now have a new data analysis to tackle. You should also feel good that your data analysis brought additional questions to the forefront, as this is one characteristic of a successful data analysis.
In the next chapters, we will make extensive use of this framework to discuss how each activity in the data analysis process needs to be continuously iterated. While executing the three steps may seem tedious at first, eventually, you will get the hang of it and the cycling of the process will occur naturally and subconsciously. Indeed, we would argue that most of the best data analysts don’t even realize they are doing this!