7.3 Luescher analysis

The phase shift can be computed from the formula

cotδ=Z00(1,q2)π3/2γq where γ=E/ECM, q=kL/2π with k the scattering momentum k2=E2CM4m2=E2P24m2. The Energy in the center of mass is related to the one in a generic frame with total momentum P via E2CM=E2impP2. Eimp is the energy measured in the lattice E=EmeasuredEfreelatt+Efreecont Efreelatt=cosh1(cosh(m)+12(3i=14sin(p1i2)2))+cosh1(cosh(m)+12(3i=14sin(p2i2)2)).

For the Z function we use the rzeta package. The fit function for the phase shift is

kmcotδ=1a0m+r0m2k2m2

P[0]=am , P[1]=r0m

χ2/d.o.f.=0.887249P[0]=0.151165±(0.0015)P[1]=3.19192±(0.13) {C=(10.001070.001071)}

00.20.40.60.811.2−9.5−9−8.5−8−7.5−7−6.5
$k/m$$\frac{k}{m} \cot \delta $

7.3.1 ML in zeta func and M as normalization

χ2/d.o.f.=0.879456P[0]=0.151075±(0.0015)P[1]=3.19427±(0.13) {C=(10.001060.001061)}

00.20.40.60.811.2−9.5−9−8.5−8−7.5−7−6.5
$k/m$$\frac{k}{m} \cot \delta $

7.3.2 Using M

χ2/d.o.f.=1.41617P[0]=0.160813±(0.0031)P[1]=3.50648±(0.16) {C=(10.002370.002371)}

00.20.40.60.811.2−9.5−9−8.5−8−7.5−7−6.5−6
$k/m$$\frac{k}{m} \cot \delta $

7.3.3 no correction

χ2/d.o.f.=17.0811P[0]=0.153688±(0.0019)P[1]=22.6356±(0.58) {C=(10.0003780.0003781)}

00.20.40.60.811.2−25−20−15−10−5
$k/m$$\frac{k}{m} \cot \delta $