18.3 Luescher analysis

The phase shift can be computed from the formula

cotδ=Z00(1,q2)π3/2γq where γ=E/ECM, q=kL/2π with k the scattering momentum k2=E2CM4m2=E2P24m2. The Energy in the center of mass is related to the one in a generic frame with total momentum P via E2CM=E2impP2. Eimp is the energy measured in the lattice E=EmeasuredEfreelatt+Efreecont Efreelatt=cosh1(cosh(m)+12(3i=14sin(p1i2)2))+cosh1(cosh(m)+12(3i=14sin(p2i2)2)).

For the Z function we use the rzeta package. The fit function for the phase shift is

kmcotδ=1a0m+r0m2k2m2

P[0]=am , P[1]=r0m

χ2/d.o.f.=2.50407P[0]=0.154299±(0.0023)P[1]=3.48222±(0.21) {C=(5.51e060.7930.7930.0442)}

00.20.40.60.81−9−8.5−8−7.5−7−6.5−6
$k/m$$\frac{k}{m} \cot \delta $

18.3.1 ML in zeta func and M as normalization

χ2/d.o.f.=2.48851P[0]=0.15426±(0.0024)P[1]=3.48283±(0.21) {C=(5.55e060.7920.7920.0441)}

00.20.40.60.81−9−8.5−8−7.5−7−6.5−6
$k/m$$\frac{k}{m} \cot \delta $

18.3.2 Using M

χ2/d.o.f.=4.07909P[0]=0.15747±(0.0029)P[1]=3.50149±(0.21) {C=(8.35e060.7340.7340.0435)}

00.20.40.60.81−9−8.5−8−7.5−7−6.5−6−5.5
$k/m$$\frac{k}{m} \cot \delta $

18.3.3 no correction

χ2/d.o.f.=13.5714P[0]=0.160133±(0.0032)P[1]=38.1117±(1.2) {C=(1.03e050.1330.1331.4)}

00.20.40.60.81−50−45−40−35−30−25−20−15−10−5
$k/m$$\frac{k}{m} \cot \delta $