18.7 fitting two and three together g10

Fiso3(E,P,L)=1/Kisodf(E)

Kisodf=P[0]M20E2M2r+P[2]

Fiso3(E,P=0,L)=1L[˜Fs3˜Fs11/(2ωKs2)+˜Fs+˜Gs˜Fs]kp[12ωKs2]kp=δkp[(kcotδ)+|q2,k(1H(k))|]132πωkE2,k and kmcotδ=1a0m+r0m2k2m2P[3]=amP[4]=r0m The best fit:

χ2/d.o.f.=1.70598P[0]=74.0805±(11)P[1]=9.12899±(0.00017)P[2]=706.844±(6e+02)P[3]=0.159792±(0.0024)P[4]=31.5321±(7.5) {C=(1300.5810.4490.1190.170.5812.87e080.5720.4810.4140.4490.5723.57e+050.1940.7150.1190.4810.1945.8e060.6660.170.4140.7150.66656.7)}

5.866.26.46.66.870.0050.010.0150.020.0250.030.035
2-particle3-particle$Lm$$(E-E^{free})/m$

18.7.1 kcot 1 par

Kisodf=P[0]M20E2M2r+P[2]

kmcotδ=1a0m The best fit:

χ2/d.o.f.=1.46817P[0]=81.5648±(12)P[1]=9.12952±(0.00059)P[2]=1455.65±(8.9e+02)P[3]=0.155717±(0.0021) {C=(1370.3560.1680.007780.3563.5e070.3740.2550.1680.3747.96e+050.7880.007780.2550.7884.48e06)}

5.866.26.46.66.870.0050.010.0150.020.0250.030.035
2-particle3-particle$Lm$$(E-E^{free})/m$

18.7.2 kcot 1 kis0 3 par covariance

We minimise the correlated χ2 χ2=i,j(EpredictedElatt)iC1i,j(EpredictedElatt)j

Kisodf=P[0]M20E2+M2r+P[2]

kmcotδ=1a0m The best fit:

χ2/d.o.f.=1.44987P[0]=96.629±(16)P[1]=9.12853±(0.0017)P[2]=1773.18±(9.8e+02)P[3]=0.15631±(0.0027) {C=(10.4630.06740.02890.46310.1050.1230.06740.10510.90.02890.1230.91)}

5.866.26.46.66.870.0050.010.0150.020.0250.030.035
2-particle3-particle$Lm$$(E-E^{free})/m$

18.7.3 kcot 1 kis0 2 par covariance

We minimise the correlated χ2 χ2=i,j(EpredictedElatt)iC1i,j(EpredictedElatt)j

Kisodf=P[0]M20E2+M2r

kmcotδ=1a0m The best fit:

χ2/d.o.f.=1.62602P[0]=80.4844±(14)P[1]=9.12735±(0.0016)P[2]=0.153147±(0.0013) {C=(10.05580.1840.055810.50.1840.51)}

5.866.26.46.66.870.0050.010.0150.020.0250.030.035
2-particle3-particle$Lm$$(E-E^{free})/m$