20.3 Luescher analysis

The phase shift can be computed from the formula

cotδ=Z00(1,q2)π3/2γq where γ=E/ECM, q=kL/2π with k the scattering momentum k2=E2CM4m2=E2P24m2. The Energy in the center of mass is related to the one in a generic frame with total momentum P via E2CM=E2impP2. Eimp is the energy measured in the lattice E=EmeasuredEfreelatt+Efreecont Efreelatt=cosh1(cosh(m)+12(3i=14sin(p1i2)2))+cosh1(cosh(m)+12(3i=14sin(p2i2)2)).

For the Z function we use the rzeta package. The fit function for the phase shift is

kmcotδ=1a0m+r0m2k2m2

P[0]=am , P[1]=r0m

χ2/d.o.f.=0.852098P[0]=0.147936±(0.002)P[1]=4.14553±(0.18) {C=(10.001570.001571)}

00.20.40.60.811.2−10−9.5−9−8.5−8−7.5−7−6.5−6
$k/m$$\frac{k}{m} \cot \delta $

20.3.1 ML in zeta func and M as normalization

χ2/d.o.f.=0.852883P[0]=0.147924±(0.002)P[1]=4.1478±(0.18) {C=(10.001570.001571)}

00.20.40.60.811.2−10−9.5−9−8.5−8−7.5−7−6.5−6
$k/m$$\frac{k}{m} \cot \delta $

20.3.2 Using M

χ2/d.o.f.=1.33012P[0]=0.150333±(0.0032)P[1]=4.18722±(0.23) {C=(10.002860.002861)}

00.20.40.60.811.2−10−9.5−9−8.5−8−7.5−7−6.5−6
$k/m$$\frac{k}{m} \cot \delta $

20.3.3 no correction

χ2/d.o.f.=7.45428P[0]=0.152828±(0.0026)P[1]=48.4841±(1.4) {C=(10.0001430.0001431)}

00.20.40.60.811.2−45−40−35−30−25−20−15−10−5
$k/m$$\frac{k}{m} \cot \delta $