33.1 g5_largeL
fit of M3s(E)=ΓE2−M2r with
Mr=P[0]+iP[1]Γ=P[2]+iP[3]
here we took kdf from the g=20 fit
χ2/d.o.f.=6.67124P[0]=2.99106±(0.43)P[1]=0.000507939±(0.017)P[2]=771.221±(9.1e+03)P[3]=−46.3566±(6.1e+02) {C=(1−0.214−0.9950.781−0.21410.259−0.767−0.9950.2591−0.8150.781−0.767−0.8151)}
33.1.1 g5_largeL closer to the pole
fiting only the points close to the pole
χ2/d.o.f.=14.3023P[0]=−3.02518±(0.0014)P[1]=−2.05679e−06±(3.2e−06)P[2]=−90.2444±(68)P[3]=3.91827±(3) {C=(10.4980.828−0.8140.4981−0.006960.03650.828−0.006961−1−0.8140.0365−11)}
33.1.2 g5_largeL plus const
fit of M3s(E)=ΓE2−M2r+a0 with
Mr=P[0]+iP[1]Γ=P[2]+iP[3]c=P[4]+iP[5]
χ2/d.o.f.=2.49786P[0]=3.02414±(8.5e+03)P[1]=−3.8596e−05±(3e+03)P[2]=−6.16673±(2.9e+08)P[3]=−0.60452±(2.7e+07)P[4]=4028.16±(6.1e+08)P[5]=−232.015±(7.6e+06) {C=(10.9520.5430.008690.377−0.9980.95210.773−0.2970.642−0.9340.5430.7731−0.8350.983−0.4960.00869−0.297−0.8351−0.923−0.06390.3770.6420.983−0.9231−0.326−0.998−0.934−0.496−0.0639−0.3261)}
33.1.3 g5_largeL Breit-Wigner
fit of M3s(E)=RE−Mr+iΓ/2+c
χ2/d.o.f.=6.6866P[0]=307.678±(3.8e+02)P[1]=1983.88±(90)P[2]=195791±(1.1e+04)P[3]=4209.13±(1.2e+03) {C=(10.872−0.938−0.9960.8721−0.809−0.89−0.938−0.80910.949−0.996−0.890.9491)}
33.1.4 g5_largeL F fit
fit of F∞(E)=P[0]+P[1]E2M20+i(P[2]+P[3]E2M20)
χ2/d.o.f.=57.4609P[0]=−4.37271e−06±(2.1e−08)P[1]=1.66569e−06±(1.3e−11)P[2]=3.67956e−06±(2.4e−09)P[3]=−1.83672e−07±(2.5e−12) {C=(1−111−11−1−11−1111−111)}
pole position 1/K+F=0 in E/M0 pole=3.0236(0.000295158)+i−2.92805e−08(4.25917e−08)