33.1 g5_largeL

fit of M3s(E)=ΓE2M2r with

Mr=P[0]+iP[1]Γ=P[2]+iP[3]

here we took kdf from the g=20 fit

χ2/d.o.f.=6.67124P[0]=2.99106±(0.43)P[1]=0.000507939±(0.017)P[2]=771.221±(9.1e+03)P[3]=46.3566±(6.1e+02) {C=(10.2140.9950.7810.21410.2590.7670.9950.25910.8150.7810.7670.8151)}

3.023.0223.0243.0263.028−0.02−0.0100.010.020.030.040.05
imre(re,fit)(im,fit)$E_3/M_0$$1/{\cal M}_{3s}$

33.1.1 g5_largeL closer to the pole

fiting only the points close to the pole

χ2/d.o.f.=14.3023P[0]=3.02518±(0.0014)P[1]=2.05679e06±(3.2e06)P[2]=90.2444±(68)P[3]=3.91827±(3) {C=(10.4980.8280.8140.49810.006960.03650.8280.00696110.8140.036511)}

3.023.0223.0243.0263.028−0.02−0.0100.010.020.030.040.05
imre(re,fit)(im,fit)$E_3/M_0$$1/{\cal M}_{3s}$

33.1.2 g5_largeL plus const

fit of M3s(E)=ΓE2M2r+a0 with

Mr=P[0]+iP[1]Γ=P[2]+iP[3]c=P[4]+iP[5]

χ2/d.o.f.=2.49786P[0]=3.02414±(8.5e+03)P[1]=3.8596e05±(3e+03)P[2]=6.16673±(2.9e+08)P[3]=0.60452±(2.7e+07)P[4]=4028.16±(6.1e+08)P[5]=232.015±(7.6e+06) {C=(10.9520.5430.008690.3770.9980.95210.7730.2970.6420.9340.5430.77310.8350.9830.4960.008690.2970.83510.9230.06390.3770.6420.9830.92310.3260.9980.9340.4960.06390.3261)}

3.023.0223.0243.0263.028−0.04−0.0200.020.04
imre(re,fit)(im,fit)$E_3/M_0$$1/{\cal M}_{3s}$

33.1.3 g5_largeL Breit-Wigner

fit of M3s(E)=REMr+iΓ/2+c

χ2/d.o.f.=6.6866P[0]=307.678±(3.8e+02)P[1]=1983.88±(90)P[2]=195791±(1.1e+04)P[3]=4209.13±(1.2e+03) {C=(10.8720.9380.9960.87210.8090.890.9380.80910.9490.9960.890.9491)}

3.023.0223.0243.0263.028−0.02−0.0100.010.020.030.040.05
imre(re,fit)(im,fit)$E_3/M_0$$1/{\cal M}_{3s}$

33.1.4 g5_largeL F fit

fit of F(E)=P[0]+P[1]E2M20+i(P[2]+P[3]E2M20)

χ2/d.o.f.=57.4609P[0]=4.37271e06±(2.1e08)P[1]=1.66569e06±(1.3e11)P[2]=3.67956e06±(2.4e09)P[3]=1.83672e07±(2.5e12) {C=(1111111111111111)}

3.023.0223.0243.0263.02800.5e−51e−51.5e−52e−52.5e−53e−5
imre(re,fit)(im,fit)$E_3/M_0$$F^{\infty}$

pole position 1/K+F=0 in E/M0 pole=3.0236(0.000295158)+i2.92805e08(4.25917e08)