Chapter 4 Hopping expansion Cross-check
The partition function for one complex field in the g=0 theory is
Z=∫dμ(ϕ)e−S[ϕ]S=−κ∑x[ϕ†(x)∑μϕ(x+μ)+h.c.],
The field has the costrain ϕ†ϕ=1 so ϕ∈U(1) and dμ is the Haar measure over U(1).
4.0.1 Haar measure
The Haar measure must satisfy ∫dμ(ϕ)=1dμ(ϕ′)=dμ(ϕ)withϕ′=eiδϕ these properties are statisfied by dμ=dθ/2π with ϕ=eiθ ∫2π0dθ2π=1dθ′2π=dθ2πwithϕ′=eiδϕ. With these definitions we can compute ∫dμ(ϕ)ϕ=∫2π0dθ2πeiθ=∮↺ and similar for \phi^\dagger \int d\mu(\phi) \phi^\dagger =\int_0^{2\pi} \frac{d\theta}{2\pi} e^{-i\theta}=\oint_{\circlearrowright} \frac{dz}{2\pi (-iz)}z=0 \,. For all the other power of \phi we observe that there will not be poles in the integrand and thus the integral will be zero \int d\mu(\phi) \phi^n=0 \quad \mbox{for}\quad n>0\,.
4.0.2 Partition function for small hopping parameter \kappa
Expanding the partition function around \kappa=0 we obtain
Z=\int \prod_x \frac{d\theta(x)}{2\pi} \left[1+\kappa\sum_{x}\left[ \phi^\dagger(x) \sum_\mu\phi({x+\mu}) +h.c. \right]\right]+O(\kappa^2)=1+O(\kappa^2)\,, we have use the fact the in the O(\kappa) term there is at least one integral of the form \int d\theta(x) \phi(x)=0. Notice that up to order O(\kappa^2) the partition function is already normalized to 1.
4.0.3 Energy
We define the Energy observable as E=\frac{1}{2V}\sum_{x}\left[ \phi^\dagger(x) \sum_\mu\phi({x+\mu}) +h.c. \right]=\frac{V}{2\kappa}S\,. It’s expectation value is
\langle E\rangle=\int \prod_x \frac{d\theta(x)}{2\pi} \left[1+\kappa\sum_{x}\left[ \phi^\dagger(x) \sum_\mu\phi({x+\mu}) +h.c. \right]\right]\frac{1}{2V}\sum_{x'}\left[ \phi^\dagger(x') \sum_\mu'\phi({x'+\mu'}) +h.c. \right]+O(\kappa^2)\,. The term O(\kappa^0) is zero since there always be an integral of \int d\theta(x) \phi(x)=0. In the term O(\kappa) the only non zero contribution comes when the fileds in the Energy observable cancel the fields in the action, this happen only if x=x' and \mu=\mu' giving a contribution 8V
- 2 for \phi^\dagger(x)\phi(x+\mu) (\phi(x)\phi^\dagger(x+\mu))+\phi(x)\phi^\dagger(x+\mu) (\phi(x)^\dagger\phi(x+\mu));
- 4 sum over \mu;
- V sum over x.
thus toghether with the overall factor \kappa/2V we get \langle E\rangle=4\kappa +O(\kappa^2)
4.0.4 Numerical test
## Warning: `gather_()` was deprecated in tidyr 1.2.0.
## Please use `gather()` instead.
## This warning is displayed once every 8 hours.
## Call `lifecycle::last_lifecycle_warnings()` to see where this warning was generated.
The result from the fit in the region \kappa< 0.06 gives
\langle E \rangle [\kappa< 0.06 ] = -0.002840827 + 4.11504 \kappa
summary(fit)
##
## Call:
## lm(formula = E_0 ~ k0, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -3.250e-04 -2.384e-04 -4.208e-05 1.687e-04 8.339e-04
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0028408 0.0001359 -20.9 <2e-16 ***
## k0 4.1150405 0.0035760 1150.8 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0002694 on 59 degrees of freedom
## Multiple R-squared: 1, Adjusted R-squared: 1
## F-statistic: 1.324e+06 on 1 and 59 DF, p-value: < 2.2e-16
We repeat for smaller values of \kappa
for (treshold in c(0.05,0.04,0.03) ){
<- lm(E_0~k0 , data = df[which(df$k0<treshold),])
fit# chi2 and error?
<-coef(fit)[["(Intercept)"]]
a<-coef(fit)[["k0"]]
bcat("$\\langle E \\rangle [\\kappa<$", treshold,"$] =$",a ,"+",b, "$\\kappa$\n\n")
}
\langle E \rangle [\kappa< 0.05 ] = -0.00207288 + 4.090886 \kappa
\langle E \rangle [\kappa< 0.04 ] = -0.001394341 + 4.068108 \kappa
\langle E \rangle [\kappa< 0.03 ] = -0.0009570297 + 4.05229 \kappa
4.0.5 g term
We can do a similar computation setting \kappa_0=\kappa_1=0 and expanding for small g. We compute the expectation value of E_g=\frac{1}{2V}\sum_{x}\left[ \phi_1^\dagger(x) \phi_0^3({x}) +h.c. \right]\,. \langle E_g\rangle=\int \prod_x \frac{d\theta(x)}{2\pi} \left[1-\frac{g}{2}\sum_{x}\left[ \phi_1^\dagger(x) \phi_0^3({x}) +h.c. \right]\right]\frac{1}{2V}\sum_{x'}\left[ \phi_1^\dagger(x')\phi_0^3(x') +h.c. \right]+O(g^2)=-\frac{g}{2}\,.
##
## Call:
## lm(formula = E_0 ~ g, data = df)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.0009660 -0.0001208 0.0001143 0.0002147 0.0006750
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -0.0002917 0.0001338 -2.18 0.0499 *
## g -0.4912214 0.0010625 -462.33 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0004177 on 12 degrees of freedom
## Multiple R-squared: 0.9999, Adjusted R-squared: 0.9999
## F-statistic: 2.137e+05 on 1 and 12 DF, p-value: < 2.2e-16
4.0.6 Numerical integration g term
Setting \kappa_0=\kappa_1=0 we can numerically solve the integral
\langle E_g\rangle=\frac{\int \prod_x \frac{d\theta_1(x) d\theta_2(x) }{(2\pi)^2} e^{-S} E_g}{\int \prod_x \frac{d\theta_1(x) d\theta_2(x) }{(2\pi)^2} e^{-S}}=\frac{\int_0^{2\pi} \frac{d\theta_1 d\theta_2 }{(2\pi)^2} e^{-g \mbox{Re}[\phi_1\phi_0^3] } \mbox{Re}[\phi_1\phi_0^3] }{\int_0^{2\pi}\frac{d\theta_1 d\theta_2 }{(2\pi)^2} e^{-g \mbox{Re}[\phi_1\phi_0^3] } }
Using Mathematica we get \langle E_g\rangle(g=3)=-0.809985
while our numerical simulation gives on an 4^4 lattice
<- read.table("../check_g/E_T4_L4_msq010000000.000000_msq110000000.000000_l00.000000_l10.000000_mu0.000000_g3.000000_rep0")
df<-mean(df[,3])
m<- sd(df[,3])
errcat("$$\\overline{ E_g} (g=3)=",mean_print(m,err),"$$\n")
\overline{ E_g} (g=3)= -0.810(17)
#probably the sd can not compute the variance because the vectori is too long
#below we try with binning")
<-1000
bins<-rep(0,bins-1)
df_b<-length(df[,3])
lenfor (i in c(1:bins-1)){
<- mean(df[c(1:len/bins)+i *len/bins ,3])
df_b[i]
}<-mean(df_b)
m<- sd(df_b)
errcat("$$\\overline{ E_g} (g=3)=",mean_print(m,err),"$$\n")
\overline{ E_g} (g=3)= -0.8099(17)