33.2 g10
fit of M3s(E)=ΓE2−M2r with
Mr=P[0]+iP[1]Γ=P[2]+iP[3]
here we took kdf from the g=20 fit
χ2/d.o.f.=0.182801P[0]=3.02175±(0.00019)P[1]=−5.13265e−07±(1.7e−07)P[2]=−80.0945±(19)P[3]=3.55979±(0.83) {C=(1−0.978−0.1550.133−0.97810.253−0.238−0.1550.2531−0.9990.133−0.238−0.9991)}
33.2.0.1 with covariance matrix
χ2/d.o.f.=1.16281e+07P[0]=3±(0)P[1]=0.000102083±(0)P[2]=254.085±(0)P[3]=−10.0645±(6.4e−15) {C=(−nan−nan−nan−nan−nan−nan−nan−nan−nan−nan−nan−nan−nan−nan−nan1)}
33.2.1 g10 closer to the pole
fiting only the points close to the pole
χ2/d.o.f.=0.0225297P[0]=3.02186±(0.00018)P[1]=2.71872e−07±(2.8e−07)P[2]=−74.2077±(19)P[3]=3.35897±(0.84) {C=(1−0.9950.0297−0.0407−0.99510.0589−0.04930.02970.05891−0.999−0.0407−0.0493−0.9991)}
33.2.2 g10 plus const
fit of M3s(E)=ΓE2−M2r+a0 with
Mr=P[0]+iP[1]Γ=P[2]+iP[3]c=P[4]+iP[5]
χ2/d.o.f.=0.0001263P[0]=3.02179±(0.00022)P[1]=−2.64813e−07±(5.5e−08)P[2]=−94.2135±(18)P[3]=4.11499±(0.8)P[4]=1786.88±(7.9e+02)P[5]=−68.4114±(37) {C=(1−0.3190.126−0.1220.0233−0.00929−0.31910.35−0.407−0.9190.8940.1260.351−0.998−0.1670.0938−0.122−0.407−0.99810.23−0.1580.0233−0.919−0.1670.231−0.997−0.009290.8940.0938−0.158−0.9971)}
33.2.3 g10 Breit-Wigner
fit of M3s(E)=RE−Mr+iΓ/2+c
χ2/d.o.f.=2.27917P[0]=3.02178±(0.00034)P[1]=5.82432e−05±(1.4e−05)P[2]=−24.6876±(5.8)P[3]=6019.8±(1.3e+03) {C=(1−0.9980.3340.171−0.9981−0.316−0.1820.334−0.3161−0.8650.171−0.182−0.8651)}
33.2.4 g10 F fit
fit of F∞(E)=P[0]+P[1]E2M20+i(P[2]+P[3]E2M20)
χ2/d.o.f.=1.52965P[0]=−4.47071e−06±(3.6e−08)P[1]=1.62498e−06±(2.5e−13)P[2]=3.69096e−06±(3.9e−09)P[3]=−1.79208e−07±(1.8e−12) {C=(10.972110.97210.9720.97110.9721110.97111)}
pole position 1/K+F=0 in E/M0 pole=3.02179(0.000223615)−i1.64916e−07(3.16526e−08)