33.3 g20
fit of M3s(E)=ΓE2−M2r with
Mr=P[0]+iP[1]Γ=P[2]+iP[3]
here we took kdf from the g=20 fit
χ2/d.o.f.=1.42792e−05P[0]=−3.02112±(0.00026)P[1]=3.89798e−07±(1.4e−07)P[2]=−259.704±(21)P[3]=10.5875±(1.2) {C=(1−0.2160.377−0.69−0.2161−0.5960.5490.377−0.5961−0.928−0.690.549−0.9281)}
33.3.1 g20 closer to the pole
fiting only the points close to the pole
χ2/d.o.f.=6.13248e−07P[0]=−3.02112±(0.00026)P[1]=4.18766e−07±(1.2e−07)P[2]=−259.674±(21)P[3]=10.6503±(1.1) {C=(1−0.410.379−0.646−0.411−0.6670.6840.379−0.6671−0.949−0.6460.684−0.9491)}
33.3.2 g20 plus const
fit of M3s(E)=ΓE2−M2r+a0 with
Mr=P[0]+iP[1]Γ=P[2]+iP[3]c=P[4]+iP[5]
χ2/d.o.f.=8.48825e−07P[0]=3.02112±(0.00026)P[1]=−4.30934e−07±(6.9e−08)P[2]=−259.683±(26)P[3]=10.6077±(1)P[4]=−2981.99±(9.3e+02)P[5]=−216.131±(3.6e+02) {C=(1−0.591−0.6560.250.6040.991−0.59110.839−0.759−0.685−0.518−0.6560.8391−0.861−0.618−0.580.25−0.759−0.86110.4870.1570.604−0.685−0.6180.48710.5060.991−0.518−0.580.1570.5061)}