33.3 g20

fit of M3s(E)=ΓE2M2r with

Mr=P[0]+iP[1]Γ=P[2]+iP[3]

here we took kdf from the g=20 fit

χ2/d.o.f.=1.42792e05P[0]=3.02112±(0.00026)P[1]=3.89798e07±(1.4e07)P[2]=259.704±(21)P[3]=10.5875±(1.2) {C=(10.2160.3770.690.21610.5960.5490.3770.59610.9280.690.5490.9281)}

3.0213.021053.02113.021153.02123.02125−8e−6−6e−6−4e−6−2e−602e−64e−66e−68e−6
imre(re,fit)(im,fit)$E_3/M_0$$1/{\cal M}_{3s}$

33.3.1 g20 closer to the pole

fiting only the points close to the pole

χ2/d.o.f.=6.13248e07P[0]=3.02112±(0.00026)P[1]=4.18766e07±(1.2e07)P[2]=259.674±(21)P[3]=10.6503±(1.1) {C=(10.410.3790.6460.4110.6670.6840.3790.66710.9490.6460.6840.9491)}

3.0213.021053.02113.021153.0212−8e−6−6e−6−4e−6−2e−602e−64e−66e−68e−6
imre(re,fit)(im,fit)$E_3/M_0$$1/{\cal M}_{3s}$

33.3.2 g20 plus const

fit of M3s(E)=ΓE2M2r+a0 with

Mr=P[0]+iP[1]Γ=P[2]+iP[3]c=P[4]+iP[5]

χ2/d.o.f.=8.48825e07P[0]=3.02112±(0.00026)P[1]=4.30934e07±(6.9e08)P[2]=259.683±(26)P[3]=10.6077±(1)P[4]=2981.99±(9.3e+02)P[5]=216.131±(3.6e+02) {C=(10.5910.6560.250.6040.9910.59110.8390.7590.6850.5180.6560.83910.8610.6180.580.250.7590.86110.4870.1570.6040.6850.6180.48710.5060.9910.5180.580.1570.5061)}

3.0213.021053.02113.021153.02123.02125−8e−6−6e−6−4e−6−2e−602e−64e−66e−68e−6
imre(re,fit)(im,fit)$E_3/M_0$$1/{\cal M}_{3s}$

33.3.3 g20 Breit-Wigner

fit of M3s(E)=REMr+iΓ/2+c

χ2/d.o.f.=0.0415362P[0]=3.02109±(0.00081)P[1]=2.12263e06±(0.00016)P[2]=47.9544±(9.6e+02)P[3]=266206±(7.3e+06) {C=(10.4580.9460.880.45810.3320.3730.9460.33210.9710.880.3730.9711)}

3.0213.021053.02113.021153.02123.02125−1e−5−0.5e−500.5e−51e−5
imre(re,fit)(im,fit)$E_3/M_0$$1/{\cal M}_{3s}$

33.3.4 g20 F fit

fit of F(E)=P[0]+P[1]E2M20+i(P[2]+P[3]E2M20)

χ2/d.o.f.=0.314772P[0]=4.41294e06±(1.9e08)P[1]=1.43993e06±(4.2e12)P[2]=3.6535e06±(2.1e09)P[3]=1.58932e07±(4.7e13) {C=(1111111111111111)}

3.0213.021053.02113.021153.02123.0212500.5e−51e−51.5e−52e−52.5e−53e−5
imre(re,fit)(im,fit)$E_3/M_0$$F^{\infty}$

pole position 1/K+F=0 in E/M_0 pole=3.02112(0.000257856)i4.29618e07(4.97291e08)