## 2.12 tau=2

### 2.12.1 Simplified fit

The fit formula with tau=”

$\begin{cases} r_{AWI}=P[2] (\eta- \eta_{cr}) +P[3] (m_0-m_{cr}) \\ m_{PCAC}= +P[4] (m_0-m_{cr}) + P[5] \mu\,. \end{cases}$ In the above fit we are treating $$\eta_{cr}$$ and $$m_{cr}$$ as fits parameters, so $\eta_{cr}=P[0]\\ m_{cr}=P[1]$

$\begin{gather} \chi^2/d.o.f.=0.482635 \\ P[0]=-1.41273\pm (0.015) \\ P[1]=-0.0410616\pm (0.00061) \\ P[2]=1.47259\pm (0.05) \\ P[3]=-16.2331\pm (5.4) \\ P[4]=1.53184\pm (0.04) \\ P[5]=-0.167479\pm (0.025) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& 0.00196& 0.000834& 0.00639& 0.00214& -0.00162\\ 0.00196& 1& -2.19e-05& -3.77e-05& 0.000213& 0.000101\\ 0.000834& -2.19e-05& 1& -0.0204& -0.00142& -0.00534\\ 0.00639& -3.77e-05& -0.0204& 1& 1.69& -0.0925\\ 0.00214& 0.000213& -0.00142& 1.69& 1& -0.0148\\ -0.00162& 0.000101& -0.00534& -0.0925& -0.0148& 1\\ \end{pmatrix} \end{gather}$}

### 2.12.2 Simplified fit local rawi

The fit formula with tau=”

$\begin{cases} r_{AWI}^{loc}=P[2] (\eta- \eta_{cr}) +P[3] (m_0-m_{cr}) \\ m_{PCAC}^{loc}= +P[4] (m_0-m_{cr}) + P[5] \mu\,. \end{cases}$ In the above fit we are treating $$\eta_{cr}$$ and $$m_{cr}$$ as fits parameters, so $\eta_{cr}=P[0]\\ m_{cr}=P[1]$

$\begin{gather} \chi^2/d.o.f.=0.47533 \\ P[0]=-1.41202\pm (0.015) \\ P[1]=-0.0410616\pm (0.00061) \\ P[2]=0.44368\pm (0.013) \\ P[3]=-4.4379\pm (1.4) \\ P[4]=1.53184\pm (0.04) \\ P[5]=-0.167479\pm (0.025) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& 0.00285& 0.00042& 0.00695& 0.00359& -0.0018\\ 0.00285& 1& 3.23e-05& -3.86e-05& 0.000213& 0.000101\\ 0.00042& 3.23e-05& 1& -0.00563& 0.00041& -0.00188\\ 0.00695& -3.86e-05& -0.00563& 1& 0.438& -0.022\\ 0.00359& 0.000213& 0.00041& 0.438& 1& -0.0148\\ -0.0018& 0.000101& -0.00188& -0.022& -0.0148& 1\\ \end{pmatrix} \end{gather}$}