4.8 critical fit W \(\beta=5.85\) \(\rho=3\)

4.8.1 tau=2

4.8.1.1 Simplified fit local rawi

The fit formula with tau

\[ \begin{cases} r_{AWI}^{loc}=P[2] (\eta- \eta_{cr}) +P[3] (m_0-m_{cr}) \\ m_{PCAC}^{loc}= +P[4] (m_0-m_{cr}) + P[5] \mu\,. \end{cases} \] In the above fit we are treating \(\eta_{cr}\) and \(m_{cr}\) as fits parameters, so \[ \eta_{cr}=P[0]\\ m_{cr}=P[1] \]

\[\begin{gather} \chi^2/d.o.f.=1.34057 \\ P[0]=-2.11228\pm (0.014) \\ P[1]=-0.0474084\pm (0.00069) \\ P[2]=0.460773\pm (0.015) \\ P[3]=-3.85642\pm (1.6) \\ P[4]=1.6101\pm (0.039) \\ P[5]=-0.14044\pm (0.017) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& 0.00269& 0.000231& 0.00574& 0.0028& -0.00256\\ 0.00269& 1& 0.000194& -0.000184& 0.000219& 0.000333\\ 0.000231& 0.000194& 1& -0.0065& 0.00329& -0.000639\\ 0.00574& -0.000184& -0.0065& 1& 0.338& -0.523\\ 0.0028& 0.000219& 0.00329& 0.338& 1& -0.0115\\ -0.00256& 0.000333& -0.000639& -0.523& -0.0115& 1\\ \end{pmatrix} \end{gather}\]}