Chapter 10 Naive fermions critical fit W \(\beta=5.95\) \(\rho=1.96\)
10.0.0.1 Simplified fit local rawi
The fit formula with tau
\[ \begin{cases} r_{AWI}=P[1] (\eta- \eta_{cr}) +P[2] \mu\\ \end{cases} \] In the above fit we are treating \(\eta_{cr}\) and \(m_{cr}\) as fits parameters, so \[ \eta_{cr}=P[0] \]
10.0.1 tau=2
\[\begin{gather} \chi^2/d.o.f.=0.0240056 \\ P[0]=-1.137\pm (0.0016) \\ P[1]=-0.984701\pm (0.004) \\ P[2]=-0.0232567\pm (0.058) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -1.92e-05& -0.000928\\ -1.92e-05& 1& -0.000145\\ -0.000928& -0.000145& 1\\ \end{pmatrix} \end{gather}\]}
10.0.2 tau=3
\[\begin{gather} \chi^2/d.o.f.=0.0123019 \\ P[0]=-1.14567\pm (0.0021) \\ P[1]=-0.98772\pm (0.0053) \\ P[2]=-0.045688\pm (0.07) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.000273& -0.00104\\ -0.000273& 1& -8.05e-05\\ -0.00104& -8.05e-05& 1\\ \end{pmatrix} \end{gather}\]}
10.0.3 tau=4
\[\begin{gather} \chi^2/d.o.f.=0.00932496 \\ P[0]=-1.14646\pm (0.0025) \\ P[1]=-0.987346\pm (0.007) \\ P[2]=-0.0288887\pm (0.079) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.000436& -0.0011\\ -0.000436& 1& 0.000474\\ -0.0011& 0.000474& 1\\ \end{pmatrix} \end{gather}\]}
10.0.4 tau=5
\[\begin{gather} \chi^2/d.o.f.=0.00919778 \\ P[0]=-1.14632\pm (0.003) \\ P[1]=-0.987246\pm (0.0091) \\ P[2]=-0.00213908\pm (0.095) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.000201& -0.00134\\ -0.000201& 1& 0.00116\\ -0.00134& 0.00116& 1\\ \end{pmatrix} \end{gather}\]}