2.9 critical fit W \(\beta=5.85\)

The fit formula

\[ \begin{cases} r_{AWI}=P[2] (\eta- \eta_{cr}) +P[3] (m_0-m_{cr}) + P[6] \mu\\ m_{PCAC}=P[4] (\eta- \eta_{cr}) +P[5] (m_0-m_{cr}) + P[7] \mu\,. \end{cases} \] In the above fit we are treating \(\eta_{cr}\) and \(m_{cr}\) as fits parameters, so \[ \eta_{cr}=P[0]\\ m_{cr}=P[1] \]

\[\begin{gather} \chi^2/d.o.f.=0.0256975 \\ P[0]=-1.41976\pm (0.056) \\ P[1]=-0.0414122\pm (0.00076) \\ P[2]=1.59126\pm (0.16) \\ P[3]=-37.0255\pm (13) \\ P[4]=-0.00591623\pm (0.0012) \\ P[5]=1.54522\pm (0.039) \\ P[6]=0.288546\pm (3) \\ P[7]=-0.152012\pm (0.025) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& 0.041& -0.0121& 0.0139& 0.0105& 0.0185& 0.0261& 0.00171\\ 0.041& 1& -0.000109& 0.000101& 0.000184& 0.000305& 0.000351& 9.53e-05\\ -0.0121& -0.000109& 1& -0.0755& -0.0272& -0.00236& -0.0589& 0.0249\\ 0.0139& 0.000101& -0.0755& 1& 8.65& 2.12& -0.879& -0.821\\ 0.0105& 0.000184& -0.0272& 8.65& 1& 0.000296& -0.000119& 1.67e-06\\ 0.0185& 0.000305& -0.00236& 2.12& 0.000296& 1& 0.00895& -0.0165\\ 0.0261& 0.000351& -0.0589& -0.879& -0.000119& 0.00895& 1& 0.212\\ 0.00171& 9.53e-05& 0.0249& -0.821& 1.67e-06& -0.0165& 0.212& 1\\ \end{pmatrix} \end{gather}\]}