2.11 locacl AWI

2.11.1 Simplified fit

The fit formula

\[ \begin{cases} r_{AWI}^{loc}=P[2] (\eta- \eta_{cr}) +P[3] (m_0-m_{cr}) \\ m_{PCAC}^{loc}= +P[4] (m_0-m_{cr}) + P[5] \mu\,. \end{cases} \] In the above fit we are treating \(\eta_{cr}\) and \(m_{cr}\) as fits parameters, so \[ \eta_{cr}=P[0]\\ m_{cr}=P[1] \]

\[\begin{gather} \chi^2/d.o.f.=0.241276 \\ P[0]=-1.44115\pm (0.046) \\ P[1]=-0.0417451\pm (0.00077) \\ P[2]=0.440433\pm (0.043) \\ P[3]=-9.45892\pm (3.4) \\ P[4]=0.802329\pm (0.02) \\ P[5]=-0.118627\pm (0.018) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& 0.0104& 0.00294& 0.0161& 0.00807& 0.0069\\ 0.0104& 1& -9.5e-05& -2.12e-05& 0.000276& 0.000364\\ 0.00294& -9.5e-05& 1& -0.0224& -0.011& 0.00662\\ 0.0161& -2.12e-05& -0.0224& 1& 0.648& 0.0206\\ 0.00807& 0.000276& -0.011& 0.648& 1& -0.00414\\ 0.0069& 0.000364& 0.00662& 0.0206& -0.00414& 1\\ \end{pmatrix} \end{gather}\]}