Chapter 8 Naive fermions critical fit W β=5.75 ρ=1.96

8.0.0.1 Simplified fit local rawi

The fit formula with tau

{rAWI=P[1](ηηcr)+P[2]μ In the above fit we are treating ηcr and mcr as fits parameters, so ηcr=P[0]

−1.7−1.6−1.5−1.4−1.3−1.2−1.1−0.3−0.2−0.100.10.20.30.4
(0.018,1)(0.028,1)(0.048,1)(0.018,fit)(0.028,fit)(0.048,fit)$\eta$$r_{AWI}$$\mu_3$

8.0.1 tau=2

χ2/d.o.f.=0.0101487P[0]=1.26153±(0.0028)P[1]=0.977204±(0.0072)P[2]=0.205121±(0.086) {C=(10.0008728.85e050.00087210.0003838.85e050.0003831)}

8.0.2 tau=3

χ2/d.o.f.=0.0010876P[0]=1.27828±(0.0044)P[1]=0.975728±(0.0098)P[2]=0.314211±(0.11) {C=(10.001610.0001730.0016110.001290.0001730.001291)}

8.0.3 tau=4

χ2/d.o.f.=0.00531205P[0]=1.26973±(0.006)P[1]=0.983751±(0.011)P[2]=0.376337±(0.14) {C=(10.0007350.001190.00073510.000510.001190.000511)}

8.0.4 tau=5

χ2/d.o.f.=0.00525624P[0]=1.25499±(0.0085)P[1]=0.990844±(0.014)P[2]=0.240153±(0.19) {C=(10.0004850.001620.00048510.003190.001620.003191)}

8.0.5 tau=6

χ2/d.o.f.=0.0183583P[0]=1.24268±(0.0096)P[1]=0.993628±(0.017)P[2]=0.0514147±(0.28) {C=(10.0006220.001590.00062210.00150.001590.00151)}

8.0.6 Table

##   tau   eta_cr    deta_cr
## 1   2 -1.26153 0.00276674
## 2   3 -1.27828 0.00441189
## 3   4 -1.26973 0.00601452
## 4   5 -1.25499 0.00846617
## 5   6 -1.24268 0.00955908