5.4 critical fit NG \(\beta=5.85\) \(\rho=3\)
we fit \(m_{PCAC}\) and \(M_{PS}^2\) with the formule
\[ \begin{cases} m_{PCAC}=P[0] + P[2] (\eta- \eta_{cr}) + P[4] \mu+ P[6](m_0- m_{cr})+P[9]\mu(\eta- \eta_{cr})\\ M_{PS}^2=P[1] + P[3] (\eta- \eta_{cr}) + P[5] \mu+ P[7](m_0- m_{cr})+ P[8] (\eta- \eta_{cr})^2\,. \end{cases} \]
The coefficient \(P[0]\) and \(P[1]\) represent the value of \(m_{PCAC}\) and \(M_{PS}^2\) at \(\eta_{cr}\) and \(\mu=0\). We are assuming that we are simulating at \(m_{cr}\)
\[\begin{gather} \chi^2/d.o.f.=1.81664 \\ P[0]=-0.0139226\pm (0.0035) \\ P[1]=0.0171355\pm (0.0075) \\ P[2]=0.158279\pm (0.014) \\ P[3]=-0.329532\pm (0.064) \\ P[4]=-1.25664\pm (0.12) \\ P[5]=2.88677\pm (0.042) \\ P[6]=1.06658\pm (0.065) \\ P[7]=-0.509116\pm (0.11) \\ P[8]=1.5204\pm (0.096) \\ P[9]=6.63147\pm (0.42) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.00274& -0.00128& 0.00283& 0.00213& 0.000237& -0.000829& 0.000982& -0.000905& 0.000803\\ -0.00274& 1& -0.000381& -0.00712& -0.00611& -0.00183& 0.000939& -0.00252& 0.00199& -7.32e-05\\ -0.00128& -0.000381& 1& -0.000501& 0.00405& 0.0018& 0.00518& -0.00483& 0.00493& -0.00766\\ 0.00283& -0.00712& -0.000501& 1& 0.0496& 0.00654& -0.00716& 0.0313& -0.0299& 0.00592\\ 0.00213& -0.00611& 0.00405& 0.0496& 1& 0.027& -0.00811& 0.00891& 0.00147& -0.0448\\ 0.000237& -0.00183& 0.0018& 0.00654& 0.027& 1& -0.00694& -0.00175& 0.0104& -0.00328\\ -0.000829& 0.000939& 0.00518& -0.00716& -0.00811& -0.00694& 1& -0.0186& 0.00727& 0.0153\\ 0.000982& -0.00252& -0.00483& 0.0313& 0.00891& -0.00175& -0.0186& 1& -0.0898& 0.0112\\ -0.000905& 0.00199& 0.00493& -0.0299& 0.00147& 0.0104& 0.00727& -0.0898& 1& -0.0246\\ 0.000803& -7.32e-05& -0.00766& 0.00592& -0.0448& -0.00328& 0.0153& 0.0112& -0.0246& 1\\ \end{pmatrix} \end{gather}\]}