5.4 critical fit NG β=5.85 ρ=3
we fit mPCAC and M2PS with the formule
{mPCAC=P[0]+P[2](η−ηcr)+P[4]μ+P[6](m0−mcr)+P[9]μ(η−ηcr)M2PS=P[1]+P[3](η−ηcr)+P[5]μ+P[7](m0−mcr)+P[8](η−ηcr)2.
The coefficient P[0] and P[1] represent the value of mPCAC and M2PS at ηcr and μ=0. We are assuming that we are simulating at mcr
χ2/d.o.f.=1.81664P[0]=−0.0139226±(0.0035)P[1]=0.0171355±(0.0075)P[2]=0.158279±(0.014)P[3]=−0.329532±(0.064)P[4]=−1.25664±(0.12)P[5]=2.88677±(0.042)P[6]=1.06658±(0.065)P[7]=−0.509116±(0.11)P[8]=1.5204±(0.096)P[9]=6.63147±(0.42) {C=(1−0.00274−0.001280.002830.002130.000237−0.0008290.000982−0.0009050.000803−0.002741−0.000381−0.00712−0.00611−0.001830.000939−0.002520.00199−7.32e−05−0.00128−0.0003811−0.0005010.004050.00180.00518−0.004830.00493−0.007660.00283−0.00712−0.00050110.04960.00654−0.007160.0313−0.02990.005920.00213−0.006110.004050.049610.027−0.008110.008910.00147−0.04480.000237−0.001830.00180.006540.0271−0.00694−0.001750.0104−0.00328−0.0008290.0009390.00518−0.00716−0.00811−0.006941−0.01860.007270.01530.000982−0.00252−0.004830.03130.00891−0.00175−0.01861−0.08980.0112−0.0009050.001990.00493−0.02990.001470.01040.00727−0.08981−0.02460.000803−7.32e−05−0.007660.00592−0.0448−0.003280.01530.0112−0.02461)}