## 4.9 7par fit local rawi

$\begin{cases} r_{AWI}^{loc}=P[2] (\eta- \eta_{cr}) +P[3] (m_0-m_{cr}) \\ m_{PCAC}^{loc}= P[4] (\eta- \eta_{cr}) +P[5] (m_0-m_{cr}) + P[6] \mu\,. \end{cases}$ In the above fit we are treating $$\eta_{cr}$$ and $$m_{cr}$$ as fits parameters, so $\eta_{cr}=P[0]\\ m_{cr}=P[1]$

$\begin{gather} \chi^2/d.o.f.=0.128814 \\ P[0]=-2.12344\pm (0.018) \\ P[1]=-0.0487412\pm (0.00071) \\ P[2]=0.460773\pm (0.015) \\ P[3]=-3.85642\pm (1.6) \\ P[4]=-0.00857609\pm (0.0016) \\ P[5]=1.59302\pm (0.04) \\ P[6]=-0.149696\pm (0.016) \\ \end{gather}$ {$\begin{gather} C=\begin{pmatrix} 1& 0.00681& -0.00202& 0.0123& 0.00834& 0.00526& -0.0045\\ 0.00681& 1& 0.000126& 7.39e-05& 9.47e-05& 0.000319& 0.000216\\ -0.00202& 0.000126& 1& -0.0065& -0.00374& 0.00293& -0.00107\\ 0.0123& 7.39e-05& -0.0065& 1& 1.14& 0.426& -0.419\\ 0.00834& 9.47e-05& -0.00374& 1.14& 1& 0.000366& -0.000485\\ 0.00526& 0.000319& 0.00293& 0.426& 0.000366& 1& -0.0123\\ -0.0045& 0.000216& -0.00107& -0.419& -0.000485& -0.0123& 1\\ \end{pmatrix} \end{gather}$}

without the point at $$\eta=-1.8$$ the critical values where $\eta_{cr}=-2.12543 \pm 0.0186222\\ m_{0cr} =-0.0489922 \pm 0.000719411$