3.10 critical fit NG \(\beta=5.85\)
we fit \(m_{PCAC}\) and \(M_{PS}^2\) with the formule
\[ \begin{cases} m_{PCAC}=P[0] + P[2] (\eta- \eta_{cr}) + P[4] \mu\\ M_{PS}^2=P[1] + P[3] (\eta- \eta_{cr}) + P[5] \mu +P[6] (\eta- \eta_{cr})^2\,. \end{cases} \]
The coefficient \(P[0]\) and \(P[1]\) represent the value of \(m_{PCAC}\) and \(M_{PS}^2\) at \(\eta_{cr}\) and \(\mu=0\). We are assuming that we are simulating at \(m_{cr}\)
\[\begin{gather} \chi^2/d.o.f.=1.32952 \\ P[0]=-0.00191924\pm (0.0057) \\ P[1]=0.000610997\pm (0.0049) \\ P[2]=0.36296\pm (0.01) \\ P[3]=-0.241742\pm (0.05) \\ P[4]=-1.21895\pm (0.088) \\ P[5]=3.12466\pm (0.088) \\ P[6]=1.56611\pm (0.053) \\ \end{gather}\] {\[\begin{gather} C=\begin{pmatrix} 1& -0.00452& 0.000476& 0.00493& -0.00198& 0.00108& 0.000265\\ -0.00452& 1& -0.000974& -0.00432& 0.000598& -0.00242& -7.2e-05\\ 0.000476& -0.000974& 1& 0.00119& -0.00433& 0.00145& 0.0021\\ 0.00493& -0.00432& 0.00119& 1& -0.00222& 0.00919& -0.012\\ -0.00198& 0.000598& -0.00433& -0.00222& 1& -0.0153& -0.0186\\ 0.00108& -0.00242& 0.00145& 0.00919& -0.0153& 1& 0.00834\\ 0.000265& -7.2e-05& 0.0021& -0.012& -0.0186& 0.00834& 1\\ \end{pmatrix} \end{gather}\]}