3.10 critical fit NG β=5.85

we fit mPCAC and M2PS with the formule

{mPCAC=P[0]+P[2](ηηcr)+P[4]μM2PS=P[1]+P[3](ηηcr)+P[5]μ+P[6](ηηcr)2.

The coefficient P[0] and P[1] represent the value of mPCAC and M2PS at ηcr and μ=0. We are assuming that we are simulating at mcr

χ2/d.o.f.=1.32952P[0]=0.00191924±(0.0057)P[1]=0.000610997±(0.0049)P[2]=0.36296±(0.01)P[3]=0.241742±(0.05)P[4]=1.21895±(0.088)P[5]=3.12466±(0.088)P[6]=1.56611±(0.053) {C=(10.004520.0004760.004930.001980.001080.0002650.0045210.0009740.004320.0005980.002427.2e050.0004760.00097410.001190.004330.001450.00210.004930.004320.0011910.002220.009190.0120.001980.0005980.004330.0022210.01530.01860.001080.002420.001450.009190.015310.008340.0002657.2e050.00210.0120.01860.008341)}

−1.6−1.4−1.2−0.15−0.1−0.0500.050.1
(-0.04,0.012)(-0.04,0.0224)$\eta$$m_{pcac}$$(\color{red}{m}_{\color{cyan}0},\mu_3)$
−1.6−1.4−1.20.050.10.150.20.25
(-0.04,0.012)(-0.04,0.0224)$\eta$$M_{PS}^2$$(\color{red}{m}_{\color{cyan}0},\mu_3)$