5.3 Exponential moving average (EMA)
EMA with n lagged period at time t: emat(P,n)=βPt+β(1−β)Pt−1+β(1−β)2Pt−2+⋯=βPt+(1−β)emat−1(P,n)
where the smoothing coefficient β is usuallyβ=2n+1
function (price,n){
myEMA <- c()
ema <-1:(n-1)] <- NA
ema[ mean(price[1:n])
ema[n]<- 2/(n+1)
beta <-for (i in (n+1):length(price)){
* price[i] +
ema[i]<-beta (1-beta) * ema[i-1]
} reclass(ema,price)
ema <-return(ema)
}
Let us apply our function:
myEMA(Cl(AAPL),n=20)
ema <-tail(ema,n=3)
## [,1]
## 2012-12-26 19.16076
## 2012-12-27 19.08783
## 2012-12-28 19.00324
In the application, the first EMA will be given by SMA, and subsequent EMAs is calcualted by the update formula.
5.3.1 TTR
In the TTR package, we can use EMA():
EMA(Cl(AAPL),n=20)
ema <-tail(ema,n=3)
## EMA
## 2012-12-26 19.16076
## 2012-12-27 19.08783
## 2012-12-28 19.00324
We can see that our code gives the same result.