References
1. Peterman TA, Lui KJ, Lawrence DN, Allen JR. Estimating the risks of transfusion‐associated acquired immune deficiency syndrome and human immunodeficiency virus infection. Transfusion. 1987;27(5):371-374. doi:10.1046/j.1537-2995.1987.27587320525.x
2. Busch MP, Bloch EM, Kleinman S. Prevention of transfusion-transmitted infections. 2019;133:1854-1864. doi:10.1182/blood-2018-11-833996
3. AuBuchon JP, Birkmeyer JD, Busch MP. Safety of the blood supply in the united states: Opportunities and controversies. 1997;127:904-909. doi:10.7326/0003-4819-127-10-199711150-00009
4. Leach Bennett J, Blajchman MA, Delage G, Fearon M, Devine D. Proceedings of a consensus conference: Risk-based decision making for blood safety. Transfusion Medicine Reviews. 2011;25(4):267-292. doi:10.1016/j.tmrv.2011.05.002
5. Korelitz JJ, Kleinman SH, Lee SR, AuBuchon JP, Schreiber GB. Declining value of alanine aminotransferase in screening of blood donors to prevent posttransfusion hepatitis B and C virus infection. The Retrovirus Epidemiology Donor Study. Transfusion. 1995;35(11):903-910. doi:10.1046/j.1537-2995.1995.351196110893.x
6. AuBuchon JP, Birkmeyer JD, Busch MP. Cost-effectiveness of expanded human immunodeficiency virus-testing protocols for donated blood. Transfusion. 1997;37(1):45-51. doi:10.1046/j.1537-2995.1997.37197176950.x
7. Marshall DA, Kleinman SH, Wong JB, et al. Cost-effectiveness of nucleic acid test screening of volunteer blood donations for hepatitis B, hepatitis C and human immunodeficiency virus in the United States. Vox sanguinis. 2004;86(1):28-40. doi:10.1111/j.0042-9007.2004.00379.x
8. Jackson BR, Busch MP, Stramer SL, AuBuchon JP. The cost-effectiveness of NAT for HIV, HCV, and HBV in whole-blood donations. Transfusion. 2003;43(6):721-729. doi:10.1046/j.1537-2995.2003.00392.x
9. Custer B, Busch MP, Marfin AA, Petersen LR. The cost-effectiveness of screening the United States blood supply for West Nile virus. Annals of Internal Medicine. 2005;143(7):486-492. http://www.ncbi.nlm.nih.gov/pubmed/16204161.
10. Bell CE, Botteman MF, Gao X, et al. Cost-effectiveness of transfusion of platelet components prepared with pathogen inactivation treatment in the United States. Clinical Therapeutics. 2003;25(9):2464-2486. doi:10.1016/S0149-2918(03)80288-6
11. Pereira A. Cost-effectiveness of transfusing virus-inactivated plasma instead of standard plasma. Transfusion. 1999;39(5):479-487. doi:10.1046/j.1537-2995.1999.39050479.x
12. Aubuchon JP, Birkmeyer JD. Safety and cost-effectiveness of solvent-detergent—treated plasma: In search of a zero-risk blood supply. JAMA: The Journal of the American Medical Association. 1994;272(15):1210-1214. doi:10.1001/jama.1994.03520150078041
13. Stein J, Besley J, Brook C, et al. Risk-based decision-making for blood safety: Preliminary report of a consensus conference. Vox Sanguinis. 2011;101(4):277-281. doi:10.1111/j.1423-0410.2011.01526.x
14. Custer B, Janssen MP. Health economics and outcomes methods in risk-based decision-making for blood safety. 2015;55:2039-2047. doi:10.1111/trf.13080
15. Bish EK, Moritz ED, El-Amine H, Bish DR, Stramer SL. Cost-effectiveness of Babesia microti antibody and nucleic acid blood donation screening using results from prospective investigational studies. Transfusion. 2015;55(9):2256-2271. doi:10.1111/trf.13136
16. Sánchez-González G, Figueroa-Lara A, Elizondo-Cano M, et al. Cost-Effectiveness of Blood Donation Screening for Trypanosoma cruzi in Mexico. PLoS Neglected Tropical Diseases. 2016;10(3). doi:10.1371/journal.pntd.0004528
17. Teljeur C, Flattery M, Harrington P, et al. Cost-effectiveness of prion filtration of red blood cells to reduce the risk of transfusion-transmitted variant Creutzfeldt-Jakob disease in the Republic of Ireland. Transfusion. 2012;52(11):2285-2293. doi:10.1111/j.1537-2995.2012.03637.x
18. Custer B, Agapova M, Martinez RH. The cost-effectiveness of pathogen reduction technology as assessed using a multiple risk reduction model. Transfusion. 2010;50(11):2461-2473. doi:10.1111/j.1537-2995.2010.02704.x
19. Agapova M, Lachert E, Brojer E, Letowska M, Grabarczyk P, Custer B. Introducing pathogen reduction technology in Poland: A cost-utility analysis. Transfus Med Hemother. 2015;42:158-165. doi:10.1159/000371664
20. Kort W de, Burg P van den, Geerligs H, Pasker-de Jong P, Marijt-van der Kreek T. Cost-effectiveness of questionnaires in preventing transfusion-transmitted infections. Transfusion. 2014;54:879-888. doi:10.1111/trf.12349
21. Cable RG, Glynn SA, Kiss JE, et al. Iron deficiency in blood donors: the REDS-II donor iron status evaluation (RISE) study. Transfusion. 2012;52(4):702-711. doi:10.1111/j.1537-2995.2011.03401.x
22. Salvin HE, Pasricha SR, Marks DC, Speedy J. Iron deficiency in blood donors: A national cross-sectional study. Transfusion. 2014;54(10):2434-2444. doi:10.1111/trf.12647
23. Spencer BR, Bialkowski W, Creel DV, et al. Elevated risk for iron depletion in high-school age blood donors. Transfusion. 2019;59(5):1706-1716. doi:10.1111/trf.15133
24. Baart AM, Van Noord PA, Vergouwe Y, et al. High prevalence of subclinical iron deficiency in whole blood donors not deferred for low hemoglobin. Transfusion. 2013;53(8):1670-1677. doi:10.1111/j.1537-2995.2012.03956.x
25. Rigas AS, Sørensen CJ, Pedersen OB, et al. Predictors of iron levels in 14,737 Danish blood donors: results from the Danish Blood Donor Study. Transfusion. 2014;54(3 Pt 2):789-796. doi:10.1111/trf.12518
26. Patel EU, White JL, Bloch EM, et al. Association of blood donation with iron deficiency among adolescent and adult females in the United States: a nationally representative study. Transfusion. 2019;59(5):1723-1733. doi:10.1111/trf.15179
27. Di Angelantonio E, Thompson SG, Kaptoge S, et al. Efficiency and safety of varying the frequency of whole blood donation (INTERVAL): a randomised trial of 45 000 donors. The Lancet. 2017;390. doi:10.1016/S0140-6736(17)31928-1
28. Goldman M, Uzicanin S, Osmond L, Scalia V, O’Brien SF. A large national study of ferritin testing in Canadian blood donors. Transfusion. 2017;57(3):564-570. doi:10.1111/trf.13956
29. Vassallo RR, Bravo MD, Kamel H. Ferritin testing to characterize and address iron deficiency in young donors. Transfusion. 2018;58(12):2861-2867. doi:10.1111/trf.14921
30. Mast AE, Bialkowski W, Bryant BJ, et al. A randomized, blinded, placebo-controlled trial of education and iron supplementation for mitigation of iron deficiency in regular blood donors. Transfusion. 2016;56(6):1588-1597. doi:10.1111/trf.13469
31. Kiss JE, Brambilla D, Glynn SA, et al. Oral iron supplementation after blood donation. Jama. 2015;313(6):575. doi:10.1001/jama.2015.119
32. Cable RG, Birch RJ, Spencer BR, et al. The operational implications of donor behaviors following enrollment in STRIDE (Strategies to Reduce Iron Deficiency in blood donors). Transfusion. 2017;57(10):2440-2448. doi:10.1111/trf.14226
33. Bialkowski W, Bryant BJ, Schlumpf KS, et al. The strategies to reduce iron deficiency in blood donors randomized trial: design, enrolment and early retention. Vox sanguinis. 2015;108(2):178-185. doi:10.1111/vox.12210
34. Ellingson KD, Sapiano MR, Haass KA, et al. Continued decline in blood collection and transfusion in the United States–2015. Transfusion. 2017;57(June):1588-1598. doi:10.1111/trf.14165
35. Busch MP, Bloch EM, Kleinman S. Prevention of transfusion-transmitted infections. 2019;133:1854-1864. doi:10.1182/blood-2018-11-833996
36. Russell WA. Estimating the impact of discontinuing universal screening of donated blood for Zika virus in the 50 U.S. states. Annals of internal medicine. 2021;Accepted.
37. Russell WA, Stramer SL, Busch MP, Custer B. Screening the blood supply for Zika virus in the 50 U.S. States and Puerto Rico: A cost-effectiveness analysis. Annals of Internal Medicine. 2019;170(3):164-174. doi:10.7326/M18-2238
38. Marchette NJ, Garcia R, Rudnick A. Isolation of Zika virus from Aedes aegypti mosquitoes in Malaysia. The American journal of tropical medicine and hygiene. 1969;18(3):411-415. doi:10.4269/ajtmh.1969.18.411
39. Grard G, Caron M, Mombo IM, et al. Zika Virus in Gabon (Central Africa) - 2007: A New Threat from Aedes albopictus? Charrel R, ed. PLoS Neglected Tropical Diseases. 2014;8(2):e2681. doi:10.1371/journal.pntd.0002681
40. Foy BD, Kobylinski KC, Foy JL, et al. Probable Non-Vector-borne Transmission of Zika Virus, Colorado, USA. Emerging Infectious Diseases. 2011;17(5):880-882. doi:10.3201/eid1705.101939
41. Besnard M, Lastère S, Teissier A, Cao-Lormeau VM, Musso D. Evidence of perinatal transmission of zika virus, French Polynesia, December 2013 and February 2014. Eurosurveillance. 2014;19(13):20751. doi:10.2807/1560-7917.ES2014.19.13.20751
42. Mlakar J, Korva M, Tul N, et al. Zika virus associated with microcephaly. New England Journal of Medicine. 2016;374(10):951-958. doi:10.1056/NEJMoa1600651
43. Calvet G, Aguiar RS, Melo AS, et al. Detection and sequencing of Zika virus from amniotic fluid of fetuses with microcephaly in Brazil: a case study. The Lancet Infectious Diseases. 2016;16(6):653-660. doi:10.1016/S1473-3099(16)00095-5
44. Barjas-Castro ML, Angerami RN, Cunha MS, et al. Probable transfusion-transmitted Zika virus in Brazil. Transfusion. 2016;56(7):1684-1688. doi:10.1111/trf.13681
45. Motta IJ, Spencer BR, Cordeiro da Silva SG, et al. Evidence for transmission of zika virus by platelet transfusion. New England Journal of Medicine. 2016;375(11):1101-1103. doi:10.1056/NEJMc1607262
46. Musso D, Nhan T, Robin E, et al. Potential for Zika virus transmission through blood transfusion demonstrated during an outbreak in French Polynesia, November 2013 to February 2014. Eurosurveillance. 2014;19(14):20761. doi:10.2807/1560-7917.ES2014.19.14.20761
47. Lanciotti RS, Kosoy OL, Laven JJ, et al. Genetic and Serologic Properties of Zika Virus Associated with an Epidemic, Yap State, Micronesia, 2007. Emerging Infectious Diseases. 2008;14(8):1232-1239. doi:10.3201/eid1408.080287
48. Gallian P, Cabié A, Richard P, et al. Zika virus in asymptomatic blood donors in Martinique. Blood. 2017;129(2):263-266. doi:10.1182/blood-2016-09-737981
49. Recommendations for Donor Screening, Deferral, and Product Management to Reduce the Risk of Transfusion- Transmission of Zika Virus. US Food and Drug Administration. 2016. http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guida.
50. Kuehnert MJ, Basavaraju SV, Moseley RR, et al. Screening of Blood Donations for Zika Virus Infection — Puerto Rico, April 3–June 11, 2016. MMWR Morbidity and Mortality Weekly Report. 2016;65(24):627-628. doi:10.15585/mmwr.mm6524e2
51. U.S. Department of Health and Human Services. Revised recommendations for reducing the risk of Zika virus transmission by blood and blood components. Guidance for industry. Fda. 2016;(August 2016):http://www.fda.gov/BiologicsBloodVaccines/Guidance. http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guida http://www.fda.gov/BiologicsBloodVaccines/Guidance.
52. Sabino EC, Loureiro P, Esther Lopes M, et al. Transfusion-transmitted dengue and associated clinical symptoms during the 2012 epidemic in Brazil. Journal of Infectious Diseases. 2015;212(11):694-702. doi:10.1093/infdis/jiv326
53. Añez G, Heisey DA, Chancey C, et al. Distribution of dengue virus types 1 and 4 in blood components from infected blood donors from Puerto Rico. Gubler DJ, ed. PLoS Neglected Tropical Diseases. 2016;10(2):e0004445. doi:10.1371/journal.pntd.0004445
54. Petersen LR, Busch MP. Transfusion-transmitted arboviruses. 2010;98:495-503. doi:10.1111/j.1423-0410.2009.01286.x
55. Matos D, Tomashek KM, Perez-Padilla J, et al. Probable and possible transfusion-transmitted dengue associated with NS1 antigen-negative but RNA confirmed-positive red blood cells. Transfusion. 2016;56(1):215-222. doi:10.1111/trf.13288
56. Cao-Lormeau VM, Blake A, Mons S, et al. Guillain-Barré Syndrome outbreak associated with Zika virus infection in French Polynesia: A case-control study. The Lancet. 2016;387(10027):1531-1539. doi:10.1016/S0140-6736(16)00562-6
57. Oehler E, Watrin L, Larre P, et al. Zika virus infection complicated by Guillain-Barré syndrome – acase report, French Polynesia, December 2013. Eurosurveillance. 2014;19(9):20720. doi:10.2807/1560-7917.ES2014.19.9.20720
58. Paploski IA, Prates APP, Cardoso CW, et al. Time lags between exanthematous illness attributed to Zika virus, Guillain-barré Syndrome, and Microcephaly, Salvador, Brazil. Emerging Infectious Diseases. 2016;22(8):1438-1444. doi:10.3201/eid2208.160496
59. Cauchemez S, Besnard M, Bompard P, et al. Association between Zika virus and microcephaly in French Polynesia, 2013-15: A retrospective study. The Lancet. 2016;387(10033):2125-2132. doi:10.1016/S0140-6736(16)00651-6
60. Rasmussen SA, Jamieson DJ, Honein MA, Petersen LR. Zika Virus and birth defects — Reviewing the evidence for causality. New England Journal of Medicine. 2016;374(20):1981-1987. doi:10.1056/nejmsr1604338
61. Centers for Disease Control and Prevention National Center for Emerging and Zoonotic Diseases. Zika virus statistics and maps. April 2020. https://www.cdc.gov/zika/reporting/index.html. Accessed December 20, 2020.
62. Saá P, Proctor M, Foster G, et al. Investigational testing for Zika virus among U.S. blood donors. New England Journal of Medicine. 2018;378(19):1778-1788. doi:10.1056/NEJMoa1714977
63. U.S. Food and Drug Administration. Revised recommendations for reducing the risk of Zika virus transmission by blood and blood components: guidance for industry.; 2018. https://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/Guid.
64. Goodell AJ, Bloch EM, Krause PJ, Custer B. Costs, consequences, and cost-effectiveness of strategies for Babesia microti donor screening of the US blood supply. Transfusion. 2014;54(9):2245-2257. doi:10.1111/trf.12805
65. Stramer SL. What EID agents concern us today- focus on ZIKV. In: AABB Annual Meeting Workshop. San Diego, CA; 2017.
66. Bureau of Transportation Statistics. 1995 American Travel Survey: Profile. Washington, DC: U.S. Department of Transportation; 1996.
67. Duffy MR, Chen T-H, Hancock WT, et al. Zika virus outbreak on Yap Island, Federated States of Micronesia. New England Journal of Medicine. 2009;360(24):2536-2543. doi:10.1056/nejmoa0805715
68. Alshekhlee A, Hussain Z, Sultan B, Katirji B. Guillain-Barré syndrome: Incidence and mortality rates in US hospitals. Neurology. 2008;70(18):1608-1613. doi:10.1212/01.wnl.0000310983.38724.d4
69. Frenzen PD. Economic cost of Guillain-Barré syndrome in the United States. Neurology. 2008;71(1):21-27. doi:10.1212/01.wnl.0000316393.54258.d1
70. Lee BY, Alfaro-Murillo JA, Parpia AS, et al. The potential economic burden of Zika in the continental United States. PLoS Neglected Tropical Diseases. 2017;11(4). doi:10.1371/journal.pntd.0005531
71. O’Brien SF, Fearon MA, Devine D, Goldman MR, Germain MR, Delage G. Estimated risk to the Canadian blood supply from sexually transmitted Zika Virus [abstract]. Transfusion. 2016;56(12A). https://onlinelibrary.wiley.com/doi/10.1111/trf.13807.
72. Busch M. Report on NHLBI-funded studies relevant to transfusion-transmitted Zika virus. In: Presented at 2017 U.s. Food and Drug Administration Blood Products Advisory Committee Meeting (30 November–1 December 2017). Silver Spring, MD; 2017.
73. DeVivo M, Chen Y, Mennemeyer S, Deutsch A. Costs of care following spinal cord injury. Topics in Spinal Cord Injury Rehabilitation. 2011;16(4):1-9. doi:10.1310/sci1604-1
74. Li R, Simmons KB, Bertolli J, et al. Cost-effectiveness of increasing access to contraception during the Zika virus outbreak, Puerto Rico, 2016. Emerging Infectious Diseases. 2017;23(1):74-82. doi:10.3201/eid2301.161322
75. Forsberg A, Press R, Einarsson U, Pedro-Cuesta J de, Holmqvist LW. Disability and health-related quality of life in Guillain-Barré syndrome during the first two years after onset: A prospective study. Clinical Rehabilitation. 2005;19(8):900-909. doi:10.1191/0269215505cr918oa
76. Hollmann M, Garin O, Galante M, Ferrer M, Dominguez A, Alonso J. Impact of influenza on health-related quality of life among confirmed (H1N1)2009 patients. Jhaveri R, ed. PLoS ONE. 2013;8(3):e60477. doi:10.1371/journal.pone.0060477
77. Murphy MS, Shehata N, Colas JA, et al. Risk of exposure to blood products during pregnancy: guidance for Zika and other donor deferral policies. Transfusion. 2017;57(3pt2):811-815. doi:10.1111/trf.14001
78. Curtin SC, Abma JC. 2010 pregnancy rates among U.S. women. National Center for Health Statistics (NCHS) health e-stat. 2015;2013(December):6. https://www.cdc.gov/nchs/data/hestat/pregnancy/2010{\_}pregnancy{\_}rates.pdf http://www.cdc.gov/nchs/data/nvsr/nvsr64/nvsr64{\_}01.pdf.
79. Herbenick D, Reece M, Schick V, Sanders SA, Dodge B, Fortenberry JD. Sexual behavior in the United States: Results from a national probability sample of men and women ages 14-94. Journal of Sexual Medicine. 2010;7(SUPPL. 5):255-265. doi:10.1111/j.1743-6109.2010.02012.x
80. Kamper-Jørgensen M, Ahlgren M, Rostgaard K, et al. Survival after blood transfusion. Transfusion. 2008;48(12):2577-2584. doi:10.1111/j.1537-2995.2008.01881.x
81. Kleinman S, Marshall D, AuBuchon J, Patton M. Survival after transfusion as assessed in a large multistate US cohort. Transfusion. 2004;44(3):386-390. doi:10.1111/j.1537-2995.2003.00660.x
82. Jalal H, Dowd B, Sainfort F, Kuntz KM. Linear regression metamodeling as a tool to Summarize and present simulation model results. Medical Decision Making. 2013;33(7):880-890. doi:10.1177/0272989X13492014
83. Custer B, Hoch JS. Cost-effectiveness analysis: What it really means for transfusion medicine decision making. Transfusion Medicine Reviews. 2009;23(1):1-12. doi:10.1016/j.tmrv.2008.09.001
84. U.S. Food and Drug Administration Center for Biologics Evaluation and Research. Transcript of the March 20 Blood Products Advisory Committee meeting; topic I: evaluating strategies to reduce the risk of Zika virus transmission by blood and blood components. March 2019. www.fda.gov/media/128648/download. Accessed December 20, 2020.
85. Custer B, Janssen MP, Hubben G, Vermeulen M, Hulst M van. Development of a web-based application and multicountry analysis framework for assessing interdicted infections and cost-utility of screening donated blood for HIV, HCV and HBV. Vox Sanguinis. 2017;112(6):526-534. doi:10.1111/vox.12538
86. BPAC H. FOOD AND DRUG ADMINISTRATION Topic I: Bacterial Risk Control Strategies for Blood Collection Establishments and Transfusion Services to Enhance the Safety and Availability of Platelets for Transfusion. 2017. https://www.fda.gov/downloads/AdvisoryCommittees/CommitteesMeetingMaterials/BloodVaccinesandOtherBiologics/BloodProductsAdvisoryCommittee/UCM586619.pdf.
87. El-Amine H, Bish EK, Bish DR. Robust postdonation blood screening under prevalence rate uncertainty. Operations Research. 2018;66(1):1-17. doi:10.1287/opre.2017.1658
88. Simon MS, Leff JA, Pandya A, et al. Cost-effectiveness of blood donor screening for Babesia microti in endemic regions of the United States. Transfusion. 2014;54(3 Pt 2):889-899. doi:10.1111/trf.12492
89. Ware AD, Jacquot C, Tobian AAR, Gehrie EA, Ness PM, Bloch EM. Pathogen reduction and blood transfusion safety in Africa: strengths, limitations and challenges of implementation in low-resource settings. Vox Sanguinis. 2018;113(1):3-12. doi:10.1111/vox.12620
90. Prowse CV. Component pathogen inactivation: A critical review. Vox Sanguinis. 2013;104(3):183-199. doi:10.1111/j.1423-0410.2012.01662.x
91. Bloch EM, Vermeulen M, Murphy E. Blood Transfusion Safety in Africa: A Literature Review of Infectious Disease and Organizational Challenges. Transfusion Medicine Reviews. 2012;26(2):164-180. doi:10.1016/j.tmrv.2011.07.006
92. Barro L, Drew VJ, Poda GG, et al. Blood transfusion in sub-Saharan Africa: understanding the missing gap and responding to present and future challenges. Vox Sanguinis. 2018;113(8):726-736. doi:10.1111/vox.12705
93. Allain JP, Goodrich R. Pathogen reduction of whole blood: utility and feasibility. 2017;27:320-326. doi:10.1111/tme.12456
94. Allain JP, Owusu-Ofori AK, Assennato SM, Marschner S, Goodrich RP, Owusu-Ofori S. Effect of Plasmodium inactivation in whole blood on the incidence of blood transfusion-transmitted malaria in endemic regions: The African Investigation of the Mirasol System (AIMS) randomised controlled trial. The Lancet. 2016;387(10029):1753-1761. doi:10.1016/S0140-6736(16)00581-X
95. World Health Organisation. Global Status Report on Blood Safety and Availability.; 2017:1-73. http://apps.who.int/iris/bitstream/handle/10665/254987/9789241565431-eng.pdf?sequence=1.
96. Osei EN, Odoi AT, Owusu-Ofori S, Allain JP. Appropriateness of blood product transfusion in the Obstetrics and Gynaecology (O&G) department of a tertiary hospital in West Africa. Transfusion Medicine. 2013;23(3):160-166. doi:10.1111/tme.12028
97. Jayaraman S, Chalabi Z, Perel P, Guerriero C, Roberts I. The risk of transfusion-transmitted infections in sub-Saharan Africa. Transfusion. 2010;50(2):433-442. doi:10.1111/j.1537-2995.2009.002402.x
98. Adjei AA, Kuma GK, Tettey Y, et al. Bacterial contamination of blood and blood components in three major blood transfusion centers, Accra, Ghana. Japanese Journal of Infectious Diseases. 2009;62(4):265-269.
99. Owusu-Ofori AK, Owusu-Ofori SP, Bates I. Detection of adverse events of transfusion in a teaching hospital in Ghana. Transfusion Medicine. 2017;27(3):175-180. doi:10.1111/tme.12392
100. Jimenez-Marco T, Garcia-Recio M, Girona-Llobera E. Our experience in riboflavin and ultraviolet light pathogen reduction technology for platelets: from platelet production to patient care. Transfusion. 2018;(July):1-9. doi:10.1111/trf.14797
101. Sluis J van der, Kate F ten, Vuzevski V, Kothe F, Aelbers G, Eijk R van. Transfusion syphilis, survival of Treponema pallidum in stored donor blood. Vox Sanguinis. 1985;49(6):390-399. doi:10.1111/j.1423-0410.1985.tb01131.x
102. Adegoke AO, Akanni OE. Survival of treponema pallidum in banked blood for prevention of syphilis transmission. North American Journal of Medical Sciences. 2011;3(7):329-332. doi:10.4297/najms.2011.3329
103. Owusu-Ofori AK, Parry CM, Bares I. Transfusion-transmitted syphilis in teaching hospital, Ghana. Emerging Infectious Diseases. 2011;17(11):2080-2082. doi:10.3201/eid1711.110282
104. World Health Organization. WHO and UNIFEF estimates of national immunization coverage in Ghana. Geneva; 2020:1-22. https://www.who.int/immunization/monitoring{\_}surveillance/data/gha.pdf.
105. World Health Organization. HIV Country Profiles.; 2019:1-6. https://cfs.hivci.org/country-factsheet.html.
106. United Nations Population Division. World Population Prospects. New York; 2019. https://population.un.org/wpp/Download/Standard/Population/.
107. Mikkelsen E, Hontelez JAC, Nonvignond J, et al. The costs of HIV treatment and care in Ghana. AIDS. 2017;31(16):2279-2286. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5642329/pdf/aids-31-2279.pdf.
108. Naimark DM, Kabboul NN, Krahn MD. The half-cycle correction revisited: Redemption of a kludge. Medical Decision Making. 2013;33(7):961-970. doi:10.1177/0272989X13501558
109. World Health Organization. Global Health Observatory data repository. https://apps.who.int/gho/data/node.main. Accessed July 2, 2020.
110. Mafirakureva N, Mapako T, Khoza S, et al. Cost effectiveness of adding nucleic acid testing to hepatitis B, hepatitis C, and human immunodeficiency virus screening of blood donations in Zimbabwe. Transfusion. 2016;56(12):3101-3111. doi:10.1111/trf.13858
111. Nayagam S, Conteh L, Sicuri E, et al. Cost-effectiveness of community-based screening and treatment for chronic hepatitis B in The Gambia: an economic modelling analysis. The Lancet Global Health. 2016;4(8):e568-e578. doi:10.1016/S2214-109X(16)30101-2
112. Fraser I, Burger J, Lubbe M, Dranitsaris G, Sonderup M, Stander T. Cost-effectiveness modelling of Sofosbuvir-containing regimens for chronic genotype 5 hepatitis C virus infection in South Africa. PharmacoEconomics. 2016;34(4):403-417. doi:10.1007/s40273-015-0356-x
113. Morgan D, Mahe C, Mayanja B, Okongo JM, Lubega R, Whitworth JA. HIV-1 infection in rural Africa: Is there a difference in median time to AIDS and survival compared with that in industrialized countries? AIDS. 2002;16(4):597-603. doi:10.1097/00002030-200203080-00011
114. Lee JSF, Sagaon Teyssier L, Dongmo Nguimfack B, et al. An analysis of volumes, prices and pricing trends of the pediatric antiretroviral market in developing countries from 2004 to 2012. BMC Pediatrics. 2016;16(1):1-8. doi:10.1186/s12887-016-0578-x
115. Sarkodie F, Ullum H, Owusu-Dabo E, Owusu-Ofori S, Owusu-Ofori A, Hassall O. A novel strategy for screening blood donors for syphilis at Komfo Anokye Teaching Hospital, Ghana. Transfusion Medicine. 2016;26(1):63-66. doi:10.1111/tme.12279
116. Hulst M van, Sagoe KWC, Vermande JE, et al. Cost-effectiveness of HIV screening of blood donations in Accra (Ghana). Value in Health. 2008;11(5):809-819. doi:10.1111/j.1524-4733.2008.00337.x
117. Russell WA, Custer BS, Brandeau ML. Optimal portfolios of blood safety interventions: test, defer or modify? Under review. 2021.
118. World Health Organization. Blood safety and availability fact sheet. 2019. https://www.who.int/news-room/fact-sheets/detail/blood-safety-and-availability. Accessed February 25, 2020.
119. Bish DR, Bish EK, Xie RS, Stramer SL. Going beyond "same-for-all" testing of infectious agents in donated blood. IIE Transactions. 2014;46:1147-1168. doi:10.1080/0740817X.2014.882038
120. Bish DR, Bish EK, Xie SR, Slonim AD. Optimal selection of screening assays for infectious agents in donated blood. IIE Transactions on Healthcare Systems Engineering. 2011;1(2):67-90. doi:10.1080/19488300.2011.609520
121. Bish EK, El-Amine H, Bish DR, Stramer SL, Slonim AD. Optimal Selection of Assays for Detecting Infectious Agents in Donated Blood. In: Kong N, Zhang S, eds. Decision Analytics and Optimization in Disease Prevention and Treatment. Wiley; 2018:109-128. https://onlinelibrary-wiley-com.stanford.idm.oclc.org/doi/pdf/10.1002/9781118960158.ch5.
122. Neumann PJ, Sanders GD, Russell LB, Siegel JE, Ganiats TG. Cost Effectiveness in Health and Medicine. 2nd ed. Oxford University Press; 2016.
123. Staley E, Grossman BJ. Blood safety in the United States: Prevention, detection, and pathogen reduction. Clinical Microbiology Newsletter. 2019;41(17):149-157. doi:10.1016/j.clinmicnews.2019.08.002
124. Genova K, Guliashki V. Linear integer programming methods and approaches - a survey. Cybernetics and Information Technologies. 2011;11(1):3-25. https://www.researchgate.net/publication/228444220.
125. Petersen LR, Brault AC, Nasci RS. West Nile virus: Review of the literature. 2013;310:308-315. doi:10.1001/jama.2013.8042
126. U.S. Food and Drug Association. Use of nucleic acid tests to reduce the risk of transmission of West Nile virus from donors of whole blood and blood components intended for transfusion.; 2009. http://www.fda.gov/BiologicsBloodVaccines/GuidanceComplianceRegulatoryInformation/default.htm.
127. Custer B, Johnson ES, Sullivan SD, et al. Community blood supply model: development of a new model to assess the safety, sufficiency, and cost of the blood supply. Medical Decision Making. 2005;25(5):571-582. https://journals.sagepub.com/doi/pdf/10.1177/0272989X05280557.
128. Ellingson KD, Sapiano MR, Haass KA, et al. Cost projections for implementation of safety interventions to prevent transfusion-transmitted Zika virus infection in the United States. Transfusion. 2017;57(S2):1625-1633. doi:10.1111/trf.14164
129. Shankar MB, Staples JE, Meltzer MI, Fischer M. Cost effectiveness of a targeted age-based West Nile virus vaccination program. Vaccine. 2017;35(23):3143-3151. doi:10.1016/j.vaccine.2016.11.078
130. Staples JE, Shankar MB, Sejvar JJ, Meltzer MI, Fischer M. Initial and long-term costs of patients hospitalized with West Nile virus disease. Am J Trop Med Hyg. 2014;90(3):402-409. doi:10.4269/ajtmh.13-0206
131. AABB. West Nile Virus Biovigilance Network. http://www.aabb.org/research/hemovigilance/Pages/wnv.aspx. Accessed June 9, 2020.
132. AABB. Zika Virus Biovigilance Network. http://www.aabb.org/research/hemovigilance/Pages/zika.aspx. Accessed June 9, 2020.
133. U.S. Census Bureau. Explore Census Data. https://data.census.gov. Accessed June 12, 2020.
134. Centers for Disease Control and Prevention NC for E, Diseases ZI. West Nile Virus Statistics and Maps. January 2020. https://www.cdc.gov/westnile/statsmaps/index.html. Accessed May 11, 2020.
135. Custer B, Johnson ES, Sullivan SD, et al. Quantifying losses to the donated blood supply due to donor deferral and miscollection. Transfusion. 2004;44(10):1417-1426. doi:10.1111/j.1537-2995.2004.04160.x
136. U.S. Bureau of Labor Statistics. Consumer expenditure survey. https://www.bls.gov/cex/. Accessed June 12, 2020.
137. Centers for Medicare and Medicaid Services. National health expenditure data. December 2019. https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData. Accessed May 11, 2020.
138. Devine D. Circular of information: Release of the red blood cells, leukocytes reduced, plasma components and platelets circulars with updates to West Nile virus testing at Canadian Blood Services. Ottawa: Canadian Blood Services; 2015:1-3. https://www.blood.ca/sites/default/files/CL{\_}2015-17.pdf.
139. Schotten N, Jong PCD, Moretti D, et al. The donation interval of 56 days requires extension to 180 days for whole blood donors to recover from changes in iron metabolism. 2016;128:2185-2188. doi:10.1182/blood-2016-04-709451
140. Custer B, Chinn A, Hirschler NV, Busch MP, Murphy EL. The consequences of temporary deferral on future whole blood donation. Transfusion. 2007;47(8):1514-1523. doi:10.1111/j.1537-2995.2007.01292.x
141. Kiss JE, Vassallo RR. How do we manage iron deficiency after blood donation? 2018;181:590-603. doi:10.1111/bjh.15136
142. Rajbhandary S, Whitaker BI, Perez GE. The 2014-2015 AABB blood collection and utilization survey report. Bethesday: AABB; 2018:1-91. http://www.aabb.org/research/hemovigilance/bloodsurvey/Docs/2014-2015-AABB-Blood-Survey-Report.pdf?ct=483178b5c665113a4a67486385907873f0a434f88cddea5b6fece817de48206c5db7f5b0d5fe99d98ac08ff2cbe330ae8ed7602ce9b2b0b3ea6861794458c137.
143. Spencer BR, Fox M, Wise L, Cable R. A composite measure of heme iron consumption predicts incident iron depletion in repeat blood donors. In: Abstract of 29th Regional Congress of the Isbt. Vol 114. Basel: Vox Sanguinis; 2019:5-240. doi:10.1111/vox.12792
144. Varma S, Simon R. Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics. 2006;7(1):91. doi:10.1186/1471-2105-7-91
145. Hand DJ, Till RJ. A Simple generalisation of the area under the ROC curve for multiple class classification problems. Machine Learning. 2001;45(2):171-186. doi:10.1023/A:1010920819831
146. Jung J, Concannon C, Shroff R, Goel S, Goldstein DG. Simple rules for complex decisions. arXiv. 2017. doi:10.1145/nnnnnnn.nnnnnnn
147. Ustun B, Rudin C. Supersparse linear integer models for optimized medical scoring systems. Machine Learning. 2016;102(3):349-391. doi:10.1007/s10994-015-5528-6
148. Letham B, Rudin C, McCormick TH, Madigan D. Interpretable classifiers using rules and Bayesian analysis: Building a better stroke prediction model. Annals of Applied Statistics. 2015;9(3):1350-1371. doi:10.1214/15-AOAS848
149. Lakkaraju H, Bach SH, Leskovec J. Interpretable decision sets: A joint framework for description and prediction. In: Proceedings of the Acm Sigkdd International Conference on Knowledge Discovery and Data Mining. Vols 13-17-Augu. New York, NY, USA: Association for Computing Machinery; 2016:1675-1684. doi:10.1145/2939672.2939874
150. Ustun B, Rudin C. Learning optimized risk scores. Journal of Machine Learning Research. 2019;20(150):75. http://arxiv.org/abs/1610.00168.
151. Benjamini Y, Yekutieli D. The control of the false discovery rate in multiple testing under dependency. Annals of Statistics. 2001;29(4):1165-1188. doi:10.1214/aos/1013699998