7.8 Prediction: Linear model (Equation) (2)

\(y_{i} = \underbrace{\color{blue}{\beta_{0}} + \color{orange}{\beta _{1}} \times x_{1i} + \color{orange}{\beta _{2}} \times x_{2i}}_{\text{Modell} = \color{green}{\widehat{y}}_{i} = \text{Predicted values}} + \underbrace{\color{red}{\varepsilon}_{i}}_{\color{red}{Error}} = \color{green}{\widehat{y}}_{i} + \color{red}{\varepsilon}_{i}\)


  • Q: Why is the linear model called “linear” model?

  • Important: Variable values (e.g., \(y_{i}\) or \(x_{1,i}\)) vary, parameter values (e.g., \(\boldsymbol{\color{blue}{\beta_{0}}}\)) constant across rows

  • Important: \(\color{green}{\widehat{y}_{i}}\) varies across units

Name \(trust2006\)
\(y_{i}\)
\(\boldsymbol{\color{blue}{\beta_{0}}}\) \(\boldsymbol{\color{orange}{\beta_{1}}}\) \(victim2006\)
\(x_{1,i}\)
\(\boldsymbol{\color{orange}{\beta_{2}}}\) \(education2006\)
\(x_{2,i}\)
\(\boldsymbol{\color{red}{\varepsilon_{i}}}\) \(\color{green}{\widehat{y}_{i}}\)
Daniel 5 ? ? 1 ? 1 ? ?
Leia 5 ? ? 0 ? 1 ? ?
Harrison 7 ? ? 0 ? 5 ? ?
.. .. .. .. .. .. .. .. ..