Chapter 1 Preliminaries

This chapter provides new important concepts and a little overview that will be useful in linear regression and model building.

1.1 Overview of Regression

Definition 1.1 Regression analysis is a statistical tool which utilizes the relation between two or more quantitative variables so that one variable can be predicted from the other(s).

The main objective of the analysis is to extract structural relationships among variables within a system. It is of interest to examine the effects that some variables exert (or appear to exert) on other variable(s).

Linear regression is used for a special class of relationships, namely, those that can be described by straight lines. The term simple linear regression refers to the case wherein only two variables are involved; otherwise, it is known as multiple linear regression.

Visualization

A good way to start regression analysis is by plotting one variable against another in a scatter plot.

This helps reveal their relationship and highlights any potential issues. The graph indicates the general tendency by which one variable varies with changes in another variable.

The scatter plot only is useful in the simple linear regression case.

house <- read_csv("house.csv")
PRICE TAX
53 652
55 1000
56 897
58 964
64 1099
44 960
49 678
72 800
82 1038
85 1200
45 860
47 600
49 676
56 1287
60 834
62 734
64 551
66 1355
35 561
38 489
43 752
46 774
46 440
50 549
65 900
cor(house$PRICE, house$TAX)
## [1] 0.5774705
lm(PRICE~TAX, house)
## 
## Call:
## lm(formula = PRICE ~ TAX, data = house)
## 
## Coefficients:
## (Intercept)          TAX  
##    31.39144      0.02931

1.2 The Model Building Process

WHAT ARE MODELS?

Model is a set of assumptions that summarizes the structure of a system.

Types of Models

  • Deterministic Models: models that produce the same exact result for a particular set of input.

    Example: income for a day as a function of items sold.

  • Stochastic Models: models that describe the unpredictable variation of the outcomes of a random experiment.

    Example: Grade of Stat 136 students using their Stat 131 grades. Take note that Stat 136 grades may still vary due to other random factors.

In Statistics, we are focused on Stochastic Models.

Types of Variables in a Regression Problem

  • dependent (regressand, endogenous, target, output, response variable) - whose variability is being studied or explained within the system.

  • independent (regressor, exogenous, feature, input, explanatory variable) - used to explain the behavior of the dependent variable. The variability of this variable is explained outside of the system.

    Examples

    1. Can we predict a selling price of a house from certain characteristics of the house? (Sen and Srivastava, Regression Analysis)

      dependent variable - price of the house
      independent variables - number of bedrooms, floor space, garage size, etc.

       

    2. Is a person’s brain size and body size predictive of his or her intelligence? (Willerman et al., 1991)

      dependent variable - IQ level
      independent variables - brain size based on MRI scans, height, and weight of a person.

       

    3. What are the variables that affect the total expenditure of Filipino households based on the Family Income and Expenditure Survey (PSA, 2012)?

      dependent variable - total annual expenditure of the households
      independent variables - total household income, whether the household is agricultural, total number of household members

       

    4. What are the determinants of a movie’s box-office performance? (Scott, 2019)

      dependent variable - box office figure
      independent variables - production budget, marketing budget, critical reception, genre of the movie

Types of Data

  • Time-series data - a set of observations on the values that a variable takes at different times (example: daily, weekly, monthly, quarterly, annually, etc.)

    Date Passengers
    1949-01-01 112
    1949-01-31 118
    1949-03-02 132
    1949-04-02 129
    1949-05-02 121
    1949-06-02 135
    1949-07-02 148
    1949-08-01 148
    1949-09-01 136
    1949-10-01 119
    1949-11-01 104
    1949-12-01 118
    1950-01-01 115
    1950-01-31 126
    1950-03-02 141
    1950-04-02 135
    1950-05-02 125
    1950-06-02 149
    1950-07-02 170
    1950-08-01 170
    1950-09-01 158
    1950-10-01 133
    1950-11-01 114
    1950-12-01 140
    1951-01-01 145
    1951-01-31 150
    1951-03-02 178
    1951-04-02 163
    1951-05-02 172
    1951-06-02 178
    1951-07-02 199
    1951-08-01 199
    1951-09-01 184
    1951-10-01 162
    1951-11-01 146
    1951-12-01 166
    1952-01-01 171
    1952-01-31 180
    1952-03-02 193
    1952-04-01 181
    1952-05-02 183
    1952-06-01 218
    1952-07-02 230
    1952-08-01 242
    1952-09-01 209
    1952-10-01 191
    1952-11-01 172
    1952-12-01 194
    1953-01-01 196
    1953-01-31 196
    1953-03-02 236
    1953-04-02 235
    1953-05-02 229
    1953-06-02 243
    1953-07-02 264
    1953-08-01 272
    1953-09-01 237
    1953-10-01 211
    1953-11-01 180
    1953-12-01 201
    1954-01-01 204
    1954-01-31 188
    1954-03-02 235
    1954-04-02 227
    1954-05-02 234
    1954-06-02 264
    1954-07-02 302
    1954-08-01 293
    1954-09-01 259
    1954-10-01 229
    1954-11-01 203
    1954-12-01 229
    1955-01-01 242
    1955-01-31 233
    1955-03-02 267
    1955-04-02 269
    1955-05-02 270
    1955-06-02 315
    1955-07-02 364
    1955-08-01 347
    1955-09-01 312
    1955-10-01 274
    1955-11-01 237
    1955-12-01 278
    1956-01-01 284
    1956-01-31 277
    1956-03-02 317
    1956-04-01 313
    1956-05-02 318
    1956-06-01 374
    1956-07-02 413
    1956-08-01 405
    1956-09-01 355
    1956-10-01 306
    1956-11-01 271
    1956-12-01 306
    1957-01-01 315
    1957-01-31 301
    1957-03-02 356
    1957-04-02 348
    1957-05-02 355
    1957-06-02 422
    1957-07-02 465
    1957-08-01 467
    1957-09-01 404
    1957-10-01 347
    1957-11-01 305
    1957-12-01 336
    1958-01-01 340
    1958-01-31 318
    1958-03-02 362
    1958-04-02 348
    1958-05-02 363
    1958-06-02 435
    1958-07-02 491
    1958-08-01 505
    1958-09-01 404
    1958-10-01 359
    1958-11-01 310
    1958-12-01 337
    1959-01-01 360
    1959-01-31 342
    1959-03-02 406
    1959-04-02 396
    1959-05-02 420
    1959-06-02 472
    1959-07-02 548
    1959-08-01 559
    1959-09-01 463
    1959-10-01 407
    1959-11-01 362
    1959-12-01 405
    1960-01-01 417
    1960-01-31 391
    1960-03-02 419
    1960-04-01 461
    1960-05-02 472
    1960-06-01 535
    1960-07-02 622
    1960-08-01 606
    1960-09-01 508
    1960-10-01 461
    1960-11-01 390
    1960-12-01 432

     

  • Cross-section data - data on one or more variables collected at the same period in time

    mpg cyl disp hp drat wt qsec vs am gear carb
    Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4
    Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4
    Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1
    Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1
    Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2
    Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1
    Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4
    Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2
    Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2
    Merc 280 19.2 6 167.6 123 3.92 3.440 18.30 1 0 4 4
    Merc 280C 17.8 6 167.6 123 3.92 3.440 18.90 1 0 4 4
    Merc 450SE 16.4 8 275.8 180 3.07 4.070 17.40 0 0 3 3
    Merc 450SL 17.3 8 275.8 180 3.07 3.730 17.60 0 0 3 3
    Merc 450SLC 15.2 8 275.8 180 3.07 3.780 18.00 0 0 3 3
    Cadillac Fleetwood 10.4 8 472.0 205 2.93 5.250 17.98 0 0 3 4
    Lincoln Continental 10.4 8 460.0 215 3.00 5.424 17.82 0 0 3 4
    Chrysler Imperial 14.7 8 440.0 230 3.23 5.345 17.42 0 0 3 4
    Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1
    Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2
    Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1
    Toyota Corona 21.5 4 120.1 97 3.70 2.465 20.01 1 0 3 1
    Dodge Challenger 15.5 8 318.0 150 2.76 3.520 16.87 0 0 3 2
    AMC Javelin 15.2 8 304.0 150 3.15 3.435 17.30 0 0 3 2
    Camaro Z28 13.3 8 350.0 245 3.73 3.840 15.41 0 0 3 4
    Pontiac Firebird 19.2 8 400.0 175 3.08 3.845 17.05 0 0 3 2
    Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1
    Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2
    Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2
    Ford Pantera L 15.8 8 351.0 264 4.22 3.170 14.50 0 1 5 4
    Ferrari Dino 19.7 6 145.0 175 3.62 2.770 15.50 0 1 5 6
    Maserati Bora 15.0 8 301.0 335 3.54 3.570 14.60 0 1 5 8
    Volvo 142E 21.4 4 121.0 109 4.11 2.780 18.60 1 1 4 2

 

  • Panel data - data on one or more variables collected at several time points and from several observations (or panel member)

    Remark: Time series and cross-sectional data can be thought of as special cases of panel data that are in one dimension only (one panel member or individual for the former, one time point for the latter).

In this course, we will focus on cross-sectional data. As early as now, try to find a cross-sectional dataset for your research project.

That is, find (or gather) a dataset with \(n\) observations, \(k\) predictors, and a response variable.

Steps in the Model-Building Process

  1. Planning
    - define the problem
    - identify the dependent/independent variables
    - establish goals

  2. Development of the model
    - collect data
    - preliminary description/exploration of the data
    - specify the model
    - fit the model
    - validate assumptions
    - remedy to regression problems
    - obtain the best model

  3. Verification and Maintenance
    - check model adequacy
    - check sign of coefficient
    - check stability of parameters
    - check forecasting ability
    - update parameters

Here in Stat 136, we are focused on the theory behind step (2) of the Model-Building Process. You will just learn the other steps naturally as you go along the way in your BS Stat journey.

1.3 Random Vectors

In this section, we combine some basic concepts in matrix theory and statistical inference.

Definition 1.2 (Random Vector)
Suppose \(\underset{n \times 1}{\boldsymbol{Y}}\) is a vector of \(n\) random variables, \(\boldsymbol{Y}=\begin{bmatrix} Y_1&Y_2 & \cdots & Y_n \end{bmatrix}'\).
Then \(\underset{n \times 1}{\boldsymbol{Y}}\) is a random vector.

Mean Vector and Covariance Matrix

Definition 1.3 The expectation of \(\boldsymbol{Y}\) is \[ E(\boldsymbol{Y})=E \begin{bmatrix} Y_1\\Y_2 \\ \vdots \\Y_n \end{bmatrix} = \begin{bmatrix} E(Y_1)\\ E(Y_2) \\ \vdots \\ E(Y_n) \end{bmatrix} \]

This is also referred as the mean vector of \(\boldsymbol{Y}\), and can be denoted as:

\[ \boldsymbol{\mu} = \begin{bmatrix} \mu_1\\ \mu_2 \\ \vdots \\ \mu_n \end{bmatrix} \tag{1.1} \]

Definition 1.4 The Variance of \(\boldsymbol{Y}\) (also known as variance-covariance matrix or dispersion matrix of \(\boldsymbol{Y}\)) is

\[ \begin{align} \text{Var}(\boldsymbol{Y})&=E\left[\left(\boldsymbol{Y}-\boldsymbol{\mu}\right)\left(\boldsymbol{Y}-\boldsymbol{\mu}\right)'\right] \\ &= E(\boldsymbol{Y}\boldsymbol{Y}') - \boldsymbol{\mu}\boldsymbol{\mu}' \end{align} \]

The variance-covariance matrix is often denoted by

\[ \boldsymbol{\Sigma} = \begin{bmatrix} \sigma_{11} & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_{22} & \cdots & \sigma_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_{nn} \\ \end{bmatrix} \tag{1.2} \]

where

  • the diagonal elements are the variances of \(Y_i\): \(\sigma_{ii}=\sigma^2_i=Var(Y_i)\)

  • the off-diagonal elements are the covariances of \(Y_i\) and \(Y_j\): \(\sigma_{ij}=cov(Y_i,Y_j)\)

The variance-covariance matrix is sometimes also written as \(V(\textbf{Y})\) or \(Cov(\boldsymbol{Y})\)

Theorem 1.1 For \(n \times 1\) constant vectors \(\textbf{a}=\begin{bmatrix} a_1 & a_2& \cdots & a_n\end{bmatrix}'\) and \(\textbf{b}=\begin{bmatrix} b_1 & b_2& \cdots & b_n\end{bmatrix}'\), and random vector \(\textbf{Y}=\begin{bmatrix} Y_1 & Y_2& \cdots & Y_n\end{bmatrix}'\) with mean vector \(\boldsymbol{\mu}\) and covariance matrix \(\boldsymbol{\Sigma}\),

  1. \(E(\textbf{Y}+\textbf{a})=\boldsymbol{\mu}+\textbf{a}\)

  2. \(E(\textbf{a}'\textbf{Y})=\textbf{a}'\boldsymbol{\mu}\)

  3. \(Var(\textbf{Y}+\textbf{a})=\boldsymbol{\Sigma}\)

  4. \(Var(\textbf{a}'\textbf{Y})=\textbf{a}'\boldsymbol{\Sigma}\textbf{a}\)

  5. \(Cov(\textbf{a}'\textbf{Y},\textbf{b}'\textbf{Y})=\textbf{a}'\boldsymbol{\Sigma}\textbf{b}\)

Theorem 1.2 Let \(\textbf{A}\) be a \(k \times n\) matrix of constants, \(\textbf{B}\) be a \(m \times n\) matrix of constants, \(\textbf{c}\) is a \(k\times 1\) vector of constants, and \(\textbf{Y}\) is a \(n \times 1\) random vector with covariance matrix \(\boldsymbol{\Sigma}\). Then:

  1. \(Var(\textbf{A}\textbf{Y})=\textbf{A}\boldsymbol{\Sigma}\textbf{A}'\)

  2. \(Var(\textbf{AY}+\textbf{c})=\textbf{A}\boldsymbol{\Sigma}\textbf{A}'\)

  3. \(Cov(\textbf{AY},\textbf{BY})=\textbf{A}\boldsymbol{\Sigma}\textbf{B}'\)

The Correlation Matrix

Definition 1.5 The correlation matrix of \(\boldsymbol{Y}\) is defined as

\[ \textbf{P}_\rho=\rho_{ij} = \begin{bmatrix} 1 & \rho_{12} & \cdots & \rho_{1n} \\ \rho_{21} & 1 & \cdots & \rho_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ \rho_{n1} & \rho_{n2} & \cdots & 1 \\ \end{bmatrix} \]

where \(\rho_{ij}=\sigma_{ij}/\sqrt{\sigma_{ii}\sigma_{jj}}\) is the correlation of \(Y_i\) and \(Y_j\).

Theorem 1.3 If we define a diagonal matrix which only contains the standard deviations \(\sigma_i=\sqrt{\sigma_{ii}}\)

\[ \textbf{D}_\sigma=[\text{diag}(\boldsymbol{\Sigma}))]^{1/2} = diag(\sqrt{\sigma_{11}}, \sqrt{\sigma_{22}},\cdots,\sqrt{\sigma_{nn}}) \]

then we can obtain the correlation matrix \(\textbf{P}_\rho\) from the covariance matrix \(\boldsymbol{\Sigma}\):

\[ \begin{align} \textbf{P}_\rho &=\textbf{D}_\sigma^{-1}\boldsymbol{\Sigma}\textbf{D}_\sigma^{-1} \\ &= \begin{bmatrix} \frac{\sigma_{11}}{\sqrt{\sigma_{11}\sigma_{11}}} & \frac{\sigma_{12}}{\sqrt{\sigma_{11}\sigma_{22}}} & \cdots & \frac{\sigma_{1n}}{\sqrt{\sigma_{11}\sigma_{nn}}} \\ \frac{\sigma_{21}}{\sqrt{\sigma_{22}\sigma_{11}}} & \frac{\sigma_{22}}{\sqrt{\sigma_{22}\sigma_{22}}} & \cdots & \frac{\sigma_{2n}}{\sqrt{\sigma_{22}\sigma_{nn}}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\sigma_{n1}}{\sqrt{\sigma_{nn}\sigma_{11}}} & \frac{\sigma_{n2}}{\sqrt{\sigma_{nn}\sigma_{22}}} & \cdots & \frac{\sigma_{nn}}{\sqrt{\sigma_{nn}\sigma_{nn}}} \\ \end{bmatrix} \end{align} \]

and vice versa:

\[ \boldsymbol{\Sigma} = \textbf{D}_\sigma \textbf{P}_\rho \textbf{D}_\sigma \]

Remarks on variance and correlation:

  • The Variance-Covariance matrix and the Correlation Matrix are always symmetric.

  • The diagonal elements of the correlation matrix are always equal to 1.

The Multivariate Normal

This is just a quick introduction. Theory and more properties will be discussed in Stat 147.

Definition 1.6 (Multivariate Normal)

Let \(\boldsymbol{\mu}\in \mathbb{R}^n\) and let \(\boldsymbol{\Sigma}\) be a \(n\times n\) positive semidefinite matrix as defined in Equations (1.1) and (1.2) respectively.

The \(n\times 1\) vector \(\boldsymbol{Y}\) is said to have a multivariate distribution with parameters \(\boldsymbol{\mu}\) and \(\boldsymbol{\Sigma}\), written as \(\boldsymbol{Y}\sim N_n(\boldsymbol{\mu}, \boldsymbol{\Sigma})\), if and only if \(\boldsymbol{l}'\boldsymbol{Y}\sim N(\boldsymbol{l}'\boldsymbol{\mu}, \boldsymbol{l}'\boldsymbol{\Sigma}\boldsymbol{l})\) for every \(n\times 1\) vector \(\boldsymbol{l}\).

The definition simply states that for \(\boldsymbol{Y}\) to be multivariate normal, every linear combination of its components must be univariate normal with parameters \(\boldsymbol{l}'\boldsymbol{\mu}\) and \(\boldsymbol{l}'\boldsymbol{\Sigma}\boldsymbol{l}\).

\[ l_1Y_1+l_2Y_2+\cdots+l_nY_n\sim N(\boldsymbol{l}'\boldsymbol{\mu}, \boldsymbol{l}'\boldsymbol{\Sigma}\boldsymbol{l}) \]

Properties of the Multivariate Normal

If \(\boldsymbol{Y}\sim N_n(\boldsymbol{\mu},\boldsymbol{\Sigma})\), then the following properties hold:

  1. The mean and variance of \(\boldsymbol{Y}\) are \(E(\boldsymbol{Y})=\boldsymbol{\mu}\) and \(V(\boldsymbol{Y})=\boldsymbol{\Sigma}\).

  2. For any vector of constants \(\boldsymbol{a}\), \(\boldsymbol{Y}+\boldsymbol{a} \sim N(\boldsymbol{\mu}+\boldsymbol{a}, \boldsymbol{\Sigma})\)

  3. The marginal distributions of the components are univariate normal, i.e. \(Y_i \sim N(\mu_i, \sigma_{ii})\), \(i=1,...,n\), where \(\mu_i\) and \(\sigma_{ii}\) are the mean and variance respectively of component \(Y_i\).

  4. For two components \(Y_i\) and \(Y_j\), \(i\neq j\), their covariance can be found on the off-diagonal elements of \(\boldsymbol{\Sigma}\), i.e. \(cov(Y_i,Y_j)=\sigma_{ij}\)

  5. If \(\textbf{L}\) is a \((p \times n)\) matrix of rank \(p\), then \(\textbf{L}\boldsymbol{Y}\sim N_p(\textbf{L}\boldsymbol{\mu}, \textbf{L}\boldsymbol{\Sigma}\textbf{L}')\)

  6. The joint PDF of \(\boldsymbol{Y}\) is given by \[ f_\boldsymbol{Y}(\boldsymbol{y})=\frac{1}{(2\pi)^{n/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2} (\boldsymbol{y}-\boldsymbol{\mu})'\boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})\right\},\quad \boldsymbol{y} \in \mathbb{R}^n \]

Questions:

  1. If two random variables are independent, are they uncorrelated?

    Answer

    Yes.

  2. If two random variables are uncorrelated, are they independent?

    Answer

    Generally, No. But if they are normally distributed, then Yes.

    This implies that if \(\boldsymbol{Y}\sim N(\boldsymbol{\mu},\boldsymbol{\Sigma})\) where \(\boldsymbol{\Sigma}=\text{diag}(\sigma^2_1, \sigma^2_2,\cdots,\sigma^2_n)\), then the marginals are mutually independent to each other, i.e. \(Y_1,Y_2,\cdots Y_n \overset{Ind}{\sim} N(\mu_i,\sigma^2_i)\).

  3. For a multivariate random vector \(\boldsymbol{Y}=\begin{bmatrix} Y_1 & Y_2& \cdots & Y_n \end{bmatrix}'\), if the marginal components are all univariate normal, i.e. \(Y_i\sim N(\mu_i, \sigma_{ii})\) for all \(i\), then does this imply that \(\boldsymbol{Y}\) follows a multivariate normal distribution?

    Answer

    No. Not necessarily.

    Again, all possible linear combinations of the components must be univariate normal.

    As a counter example, suppose \(\boldsymbol{Y}=\begin{bmatrix} Y_1 & Y_2 \end{bmatrix}'\) has a joint PDF

    \[ f_\boldsymbol{Y}(\boldsymbol{y}) = \frac{1}{2\pi}e^{-\frac{1}{2}(y_1^2+y_2^2)}\times\left[1+ y_1y_2 e^{-\frac{1}{2}(y_1^2+y_2^2)} \right],\quad \boldsymbol{y} \in \mathbb{R}^2 \] This is NOT the pdf of a bivariate normal. Therefore, \(\boldsymbol{Y}\) does not follow a multivariate normal distribution.

    However, if we derive the marginal distributions of \(Y_1\) and \(Y_2\), we will obtain univariate normal PDFs.

    Proof:

    \[\begin{align} f_{Y_1}(y_1) &= \int_{-\infty}^\infty f(\boldsymbol{y})dy_2 \\ &=\int_{-\infty}^\infty \frac{1}{2\pi}e^{-\frac{1}{2}(y_1^2+y_2^2)}\times\left[1+ y_1y_2 e^{-\frac{1}{2}(y_1^2+y_2^2)} \right] dy_2\\ &= \underbrace{\int_{-\infty}^\infty \frac{1}{2\pi}e^{-\frac{1}{2}(y_1^2+y_2^2)} dy_2}_{(a)} + \underbrace{\int_{-\infty}^\infty \frac{1}{2\pi}e^{-\frac{1}{2}(y_1^2+y_2^2)}y_1y_2 e^{-\frac{1}{2}(y_1^2+y_2^2)}dy_2}_{(b)} \end{align}\]

    Aside (a):

    \[ \begin{align} (a) &= \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y_1^2}\int_{-\infty}^\infty \underbrace{\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y_2^2}}_{\text{pdf of } N(0,1)} dy_2\\ &= \frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y_1^2} \end{align} \] Aside (b):

    \[ \begin{align} (b) &= \int_{-\infty}^\infty \frac{1}{2\pi}y_1y_2 e^{-(y_1^2+y_2^2)}dy_2\\ &=\int_{-\infty}^\infty \frac{1}{2\pi}y_1 e^{-y_1^2} y_2 e^{-y_2^2}dy_2\\ &=\frac{1}{2\pi}y_1 e^{-y_1^2}\int_{-\infty}^\infty y_2 e^{-y_2^2}dy_2 \\ &= \frac{1}{2\pi}y_1 e^{-y_1^2}\left(-\frac{e^{-y_2^2}}{2} \Biggm|_{x_2=-\infty}^{x_2=+\infty}\right) \\ &= \frac{1}{2\pi}y_1 e^{-y_1^2}(0-0) \\ &=0 \end{align} \] Therefore, the marginal pdf of \(Y_1\) is

    \[ f_{Y_1}(y_1)=\frac{1}{\sqrt{2\pi}}e^{-\frac{1}{2}y_1^2} \] which is a univariate \(Normal(0,1)\).

    Using the same process, we can also see that \(Y_2\sim N(0,1)\)

    Therefore, we showed a multivariate random vector that DOES NOT follow the multivariate normal distribution, but has marginal components that each has univariate normal PDFs.

    Having univariate normal as marginal distributions does not imply that the joint distribution is multivariate normal. \(\blacksquare\)

© 2026 Siegfred Roi Codia. All rights reserved.