# R Programming

# ntpu-data-visualization.utf8.md

## by tpemartin

經濟資料視覺化處理 […] This course is designed to develop the skill of efficient graphic language, where efficiency is defined as the data information delivery that is self-contained, concise, and non-distorting. The programming language is mainly based on R, with a little bit of Javascript toward the end. Though there is no computer programming knowledge required, basic R knowledge will help (the ebook, R for Data Science, would be a good start). By the end of the course, students who learn well should be able to … Read more →

# Introduction to Data Science

## by Rafael A. Irizarry

This book introduces concepts and skills that can help you tackle real-world data analysis challenges. It covers concepts from probability, statistical inference, linear regression and machine learning and helps you develop skills such as R programming, data wrangling with dplyr, data visualization with ggplot2, file organization with UNIX/Linux shell, version control with GitHub, and reproducible document preparation with R markdown. Read more →

# Notes for ST463/ST683 Linear Models 1

## by Katarina Domijan, Catherine Hurley

These are the notes for ST463/ST683 Linear Models 1 course offered by the Mathematics and Statistics Department at Maynooth University. This module is offered at as a part of of MSc in Data Science and Data Analytics. It is an introductory course for students who have basic background in Statistics, Data analysis, R Programming and linear algebra (matrices). […] There are many good resources, e.g. Weisberg (2005), Fox (2005), Fox (2016), Ramsey and Schafer (2002), Draper and Smith (1966). We will use Minitab and R (R Core Team 2017). To create this document, I am using the bookdown package … Read more →

# Introduction to Econometrics with R

## by Christoph Hanck, Martin Arnold, Alexander Gerber and Martin Schmelzer

Beginners with little background in statistics and econometrics often have a hard time understanding the benefits of having programming skills for learning and applying Econometrics. ‘Introduction to Econometrics with R’ is an interactive companion to the well-received textbook ‘Introduction to Econometrics’ by James H. Stock and Mark W. Watson (2015). It gives a gentle introduction to the essentials of R programming and guides students in implementing the empirical applications presented throughout the textbook using the newly aquired skills. This is supported by interactive programming exercises generated with DataCamp Light and integration of interactive visualizations of central concepts which are based on the flexible JavaScript library D3.js. Read more →

# An Introduction to Statistical and Data Sciences via R

## by Chester Ismay and Albert Y. Kim

An open-source and fully-reproducible electronic textbook bridging the gap between traditional introductory statistics and data science courses. […] Help! I’m new to R and RStudio and I need to learn about them! However, I’m completely new to coding! What do I do? If you’re asking yourself this question, then you’ve come to the right place! Start with our Introduction for Students. This is version 0.4.0 of ModernDive published on July 21, 2018. For previous versions of ModernDive, see Section 1.5. This book assumes no prerequisites: no algebra, no calculus, and no prior programming/coding … Read more →

# Foundations of Statistics with R

## by Darrin Speegle

This book is written for the purposes of teaching STAT 3850 at Saint Louis University. […] This is a book on probability and statistics suitable for the sophomore or junior level at university. We assume knowledge of calculus at the level of Calculus II. We do not assume prior experience with statistics or programming, though students who have no experience with either statistics or programming before starting this class should expect to have to work hard. We will be using R as an integral part of the exposition — you should not read this book without first getting R Studio installed. We … Read more →

# Functional programming and unit testing for data munging with R

## by Bruno Rodrigues

This book is an introduction to functional programming and unit testing with the R programming language, for the purpose of data muning […] This book is still being written, some chapters are not finished yet, and there might be (there are) some typos. Don’t hesitate to write to me if you notice something weird. You can purchase a digital copy of this book at leanpub. The version on Leanpub will not always be up-to-date, I only update it when I made very big changes (new chapters, etc). But once this book will be finished, both version are going to be the same. This book serves to show how … Read more →

# ModernDive

## by Chester Ismay and Albert Y. Kim STARRING FRANK MCGRADE

An open-source and fully-reproducible electronic textbook bridging the gap between traditional introductory statistics and data science courses. […] Help! I’m new to R and RStudio and I need to learn about them! However, I’m completely new to coding! What do I do? If you’re asking yourself this question, then you’ve come to the right place! Start with our Introduction for Students. This is version 0.2.0 of ModernDive published on August 02, 2017. For previous versions of ModernDive, see Section 1.4. This book assumes no prerequisites: no algebra, no calculus, and no prior programming/coding … Read more →

# R Programming for Data Science

## by Roger D. Peng

The R programming language has become the de facto programming language for data science. Its flexibility, power, sophistication, and expressiveness have made it an invaluable tool for data scientists around the world. This book is about the fundamentals of R programming. You will get started with the basics of the language, learn how to manipulate datasets, how to write functions, and how to debug and optimize code. With the fundamentals provided in this book, you will have a solid foundation on which to build your data science toolbox. Read more →

# Efficient R programming

## by Colin Gillespie, Robin Lovelace

Efficient R Programming is about increasing the amount of work you can do with R in a given amount of time. It’s about both computational and programmer efficiency. […] This is the online version of the O’Reilly book: Efficient R programming. Pull requests and general comments are welcome. Colin Gillespie is Senior lecturer (Associate professor) at Newcastle University, UK. His research interests are high performance statistical computing and Bayesian statistics. He is regularly employed as a consultant by Jumping Rivers and has been teaching R since 2005 at a variety of levels, ranging … Read more →

# Advanced R

## by Hadley Wickham

This is the website for work-in-progress 2nd edition of “Advanced R”, a book in Chapman & Hall’s R Series. The book is designed primarily for R users who want to improve their programming skills and understanding of the language. It should also be useful for programmers coming to R from other languages, as it explains some of R’s quirks and shows how some parts that seem horrible do have a positive side. This edition is a work in progress. If you’re looking for the electronic version of the 1st edition, you can find it online at http://adv-r.had.co.nz/. You may also be interested in: “R for … Read more →