Vector Matrix Notation
Vector matrix notation with binary variables
Now let’s write this same model in vector-matrix notation. We need to specify vectors \(\mathbf{Y}\), \(\boldsymbol{\beta}\) and \(\boldsymbol{\epsilon}\) and design matrix \(\mathbf{X}\).
If we let \(i=1, \ldots, n\), we can see that we have \(n\) equations:
\[\begin{aligned} y_1 & =\alpha+\beta I_{x_1}+\epsilon_1 \\
y_2 & =\alpha+\beta I_{x_2}+\epsilon_2 \\
&\vdots \\
y_n & = \alpha+\beta I_{x_n}+\epsilon_n \end{aligned}\]
where, for \(i=1,\ldots,n\),
\[
\beta I_{x_i}=
\begin{cases}
\beta \hspace{0.5cm} \mbox{if } x_i=1 \\
0 \hspace{0.5cm} \mbox{if } x_i=0.
\end{cases}
\]
Now suppose that \(m\) out of the \(n\) observations have \(x_i=1\) and the remaining \(n-m\) observations have \(x_i=0\). We may group these data such that
\[\begin{aligned} y_1 & =\alpha+\beta +\epsilon_1 \\
y_2 & =\alpha+\beta +\epsilon_2 \\
&\vdots \\
y_m & =\alpha+\beta +\epsilon_m \\
y_{m+1} & =\alpha +\epsilon_{m+1} \\
&\vdots \\
y_n & = \alpha+\epsilon_n \end{aligned}\]
We group all the observations, \(y_i\), into an \(n\) dimensional vector \(Y\), and the errors \(\epsilon_i\) into another column vector \(\boldsymbol{\epsilon}\):
\[\begin{aligned}
\mathbf{Y} =&\left(
\begin{array}{c}
y_{1} \\
\vdots \\
y_{m} \\
y_{m+1} \\
\vdots \\
y_{n} \\
\end{array}
\right),
\quad \quad \quad \quad \boldsymbol{\epsilon} &= \left(
\begin{array}{c}
\epsilon_{1} \\
\vdots \\
\epsilon_{m} \\
\epsilon_{m+1} \\
\vdots \\
\epsilon_{n} \\
\end{array}
\right).\\
\end{aligned} \]
Similarly, we stack the two parameters, \(\alpha\) and \(\beta\), into another column vector:
\[\begin{aligned}
\boldsymbol{\beta} &=&\left(
\begin{array}{c}
\alpha \\
\beta
\end{array}
\right)\end{aligned}\]
Finally, we append a vector of ones with the single predictor for each \(i\), and create a matrix with two columns of the following form:
\[\begin{aligned}\mathbf{X}&=&\left(
\begin{array}{cc}
1 & 1 \\
\vdots & \vdots \\
1 & 1\\
1 & 0 \\
\vdots & \vdots \\
1 & 0
\end{array}
\right).
\end{aligned}\]
such that when we multiply
\(\mathbf{X}\) by \(\boldsymbol{\beta}\)
\[\mathbf{X}\boldsymbol{\beta} = \left( \begin{array}{c} \alpha +\beta \\ \vdots \\ \alpha +\beta \\ \alpha \\ \vdots \\ \alpha \end{array} \right).\\ \]