Vector Matrix Notation

Vector matrix notation with binary variables

Now let’s write this same model in vector-matrix notation. We need to specify vectors \mathbf{Y}, \boldsymbol{\beta} and \boldsymbol{\epsilon} and design matrix \mathbf{X}.
If we let i=1, \ldots, n, we can see that we have n equations: \begin{aligned} y_1 & =\alpha+\beta I_{x_1}+\epsilon_1 \\ y_2 & =\alpha+\beta I_{x_2}+\epsilon_2 \\ &\vdots \\ y_n & = \alpha+\beta I_{x_n}+\epsilon_n \end{aligned} where, for i=1,\ldots,n, \beta I_{x_i}= \begin{cases} \beta \hspace{0.5cm} \mbox{if } x_i=1 \\ 0 \hspace{0.5cm} \mbox{if } x_i=0. \end{cases} Now suppose that m out of the n observations have x_i=1 and the remaining n-m observations have x_i=0. We may group these data such that \begin{aligned} y_1 & =\alpha+\beta +\epsilon_1 \\ y_2 & =\alpha+\beta +\epsilon_2 \\ &\vdots \\ y_m & =\alpha+\beta +\epsilon_m \\ y_{m+1} & =\alpha +\epsilon_{m+1} \\ &\vdots \\ y_n & = \alpha+\epsilon_n \end{aligned} We group all the observations, y_i, into an n dimensional vector Y, and the errors \epsilon_i into another column vector \boldsymbol{\epsilon}: \begin{aligned} \mathbf{Y} =&\left( \begin{array}{c} y_{1} \\ \vdots \\ y_{m} \\ y_{m+1} \\ \vdots \\ y_{n} \\ \end{array} \right), \quad \quad \quad \quad \boldsymbol{\epsilon} &= \left( \begin{array}{c} \epsilon_{1} \\ \vdots \\ \epsilon_{m} \\ \epsilon_{m+1} \\ \vdots \\ \epsilon_{n} \\ \end{array} \right).\\ \end{aligned} Similarly, we stack the two parameters, \alpha and \beta, into another column vector: \begin{aligned} \boldsymbol{\beta} &=&\left( \begin{array}{c} \alpha \\ \beta \end{array} \right)\end{aligned} Finally, we append a vector of ones with the single predictor for each i, and create a matrix with two columns of the following form: \begin{aligned}\mathbf{X}&=&\left( \begin{array}{cc} 1 & 1 \\ \vdots & \vdots \\ 1 & 1\\ 1 & 0 \\ \vdots & \vdots \\ 1 & 0 \end{array} \right). \end{aligned} such that when we multiply \mathbf{X} by \boldsymbol{\beta}

\mathbf{X}\boldsymbol{\beta} = \left( \begin{array}{c} \alpha +\beta \\ \vdots \\ \alpha +\beta \\ \alpha \\ \vdots \\ \alpha \end{array} \right).\\