Summary points
In lecture 6, we covered
R^2 = 1-\frac{RSS}{TSS}
R^{2} \mbox{(adj)} ={1-(1-R^{2}){n-1 \over n-k-1}}
ANOVA For The Simple Linear Regression
Component Degrees of freedom (df) Sum of squares (SS) Mean squares (MS) F value Model 1 (S_{xy})^2/S_{xx} \frac{(S_{xy})^2/S_{xx}}{1} \frac{\frac{(S_{xy})^2/S_{xx}}{1}}{\frac{S_{yy}-(S_{xy})^2/S_{xx}}{n-2}} Residual n-2 S_{yy}-(S_{xy})^2/S_{xx} \frac{S_{yy}-(S_{xy})^2/S_{xx}}{n-2} Total n-1 \sum_i(y_i-\bar{y})^2 = S_{yy}