Combine
Load packages
##
## Attaching package: 'dplyr'
## The following object is masked from 'package:kableExtra':
##
## group_rows
## The following objects are masked from 'package:stats':
##
## filter, lag
## The following objects are masked from 'package:base':
##
## intersect, setdiff, setequal, union
3.0.1 Gather metrics
# Canopy
load("3_pipeline/store/can_poly_cov.rData")
# UPLVI
load("3_pipeline/store/UPLVI_class_cov.rData")
# Total length of roads
load("3_pipeline/store/road_tot.rData")
# Proportion of pinch point within 50m to a road
load("3_pipeline/store/prop_Road.rData")
# Total length of trails
load("3_pipeline/store/trail_tot.rData")
# Proportion of pinch point within 50m to a trail
load("3_pipeline/store/prop_trail.rData")
#extracted raster data
load("3_pipeline/store/pp_r.rData")
load("3_pipeline/tmp/pp_s_clip_clus.rData")
load("1_data/manual/pp_s_clip.rData")
Reformat data frames
can_poly_cov2<-
can_poly_cov%>%
dplyr::select(-c(3)) %>%
spread(key=Class, value=proportion)%>%
rename("Shrub_Dec"="Shrub-Dec", "Tree_Con"="Tree-Con", "Tree_Dec"="Tree-Dec", "ID"="group")
UPLVI_PRIMECLAS<-spread(UPLVI_class_cov$PRIMECLAS[-c(3)], PRIMECLAS, t_proportion)
UPLVI_LANDCLAS<-spread(UPLVI_class_cov$LANDCLAS[-c(3)], LANDCLAS, t_proportion)
UPLVI_STYPE<-spread(UPLVI_class_cov$STYPE[-c(3)], STYPE, t_proportion)
prop_Road<-prop_Road %>%
rename("r_proportion"="proportion")
prop_trail<- prop_trail %>%
rename("t_proportion"="proportion") %>%
dplyr::select(-c("pp_area"))
prop_Road<-prop_Road%>%
rename("ID"="group")
prop_trail<-prop_trail%>%
rename("ID"="group")
trail_tot<-as.data.frame(trail_tot)%>%
rename("ID"="group")%>%
dplyr::select(-c(5:7))
road_tot<-as.data.frame(road_tot)%>%
rename("ID"="group")%>%
dplyr::select(-c(5:7))
pp_metrics<-can_poly_cov2%>%
left_join(UPLVI_PRIMECLAS)%>%
left_join(UPLVI_LANDCLAS)%>%
left_join(UPLVI_STYPE)%>%
left_join(prop_Road)%>%
left_join(road_tot)%>%
left_join(prop_trail)%>%
left_join(trail_tot)
save(pp_metrics, file="1_data/manual/pp_metrics.rData")
pp_all_clus_metrics<-left_join(pp_all_clus, pp_metrics)
# change crs to wgs for shiny app
pp_all_clus_metrics_wgs<-st_transform(pp_all_clus_metrics, crs ="+proj=longlat +datum=WGS84")
save(pp_all_clus_metrics_wgs, file="1_data/manual/pp_all_clus_metrics_wgs.rdata")
# filter out polygons based on minimum area
## set min area (m^2)
m<-5000
library(units) #use this package to convert the threshold value to a units object
m=set_units(m, m^2)
f<-pp_all_clus$area>m
pp_all_clus_minArea=pp_all_clus[f,]
save(pp_all_clus_minArea, file="3_pipeline/store/pp_all_clus_minArea.rData")