16 Homework and Classwork Answers

16.1 Week 2

# This is all copied from the "Import Data" dialog.
cows <- read_delim("input_data/cattle-NamesFemaleCalves.csv", 
    delim = ";", escape_double = FALSE, trim_ws = TRUE, 
    skip = 1) 
## Rows: 592 Columns: 5
## ── Column specification ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ";"
## chr (2): Name, OwnerLanguage
## dbl (3): count, Rank, year
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
cows |>
  # I only want these three names
  filter(Name %in% c("Bella", "Fiona", "Tina")) |> 
  
  # This contains separate data for each language,
  # but I just want the "all" data.
  filter(OwnerLanguage == "__all__") |> 
  
  # I only want the data for the years before 2023
  filter(year < 2023) |> 

  # I only want the columns Name, count, and year
  select(Name, count, year) |> 
  
  # Now we put everything into ggplot!
  # We add aesthetics (aes) to tell ggplot which columns 
  # to use for x and y, and the color
  ggplot(aes(x=year, y=count, color=Name)) +
  
  # We add a line and points
  geom_line() +
  geom_point() +
  
  # We add a title and labels
  labs(
    title="The rise of Bella: frequency of cow names 2010-2022",
    x = "Year",
    y= "Total count"
  )

16.2 Week 4 filtering

births |> 
  filter(sex_of_child == "T") |> 
  select(-sex_of_child) |> 
  mutate(
    mother_age_from = str_sub(age_of_mother, 2, 3),
    mother_age_to = str_sub(age_of_mother, 5, 6)
    ) |> 
  filter(canton != "CH") |> 
  filter(age_of_mother != "_T") |> 
  mutate(
    mother_age_from = as.numeric(mother_age_from),
    mother_age_to = as.numeric(mother_age_to)
  ) |> 
  select(-age_of_mother)

16.3 Week 4 Bonus Questions

  1. Between 2010 and 2020, what were the average number of children born each year in each canton?
births |> 
  filter(year >= 2010, year <= 2020) |>
  group_by(canton_name, year) |>
  summarise(total_births_per_year = sum(total_born)) |>
  summarize(avg_born = mean(total_births_per_year))
## # A tibble: 26 × 2
##    canton_name            avg_born
##    <chr>                     <dbl>
##  1 Aargau                    6682.
##  2 Appenzell Ausserrhoden     545.
##  3 Appenzell Innerrhoden      175.
##  4 Basel-Landschaft          2532.
##  5 Basel-Stadt               1983.
##  6 Bern                      9820.
##  7 Freiburg                  3332.
##  8 Genf                      5229 
##  9 Glarus                     382.
## 10 Graubünden                1715 
## # ℹ 16 more rows
  1. Building off this, which years had an above average birth rate for that decade?
births |> 
  filter(year >= 2010, year <= 2020) |>
  group_by(canton_name, year) |>
  summarise(total_births_per_year = sum(total_born)) |>
  summarize(year = year, total_births_per_year = total_births_per_year, avg_born = mean(total_births_per_year)) |> 
  mutate(above_average = total_births_per_year > avg_born) |> 
  filter(above_average) |> 
  select(canton_name, year)
## # A tibble: 154 × 2
## # Groups:   canton_name [26]
##    canton_name             year
##    <chr>                  <dbl>
##  1 Aargau                  2014
##  2 Aargau                  2015
##  3 Aargau                  2016
##  4 Aargau                  2017
##  5 Aargau                  2018
##  6 Aargau                  2019
##  7 Aargau                  2020
##  8 Appenzell Ausserrhoden  2015
##  9 Appenzell Ausserrhoden  2016
## 10 Appenzell Ausserrhoden  2017
## # ℹ 144 more rows
  1. Here’s some data about the number of deaths in each canton. https://opendata.swiss/de/dataset/todesfalle-nach-funf-jahres-altersgruppe-geschlecht-und-kanton-1969-2023 Can you download and clean this one?
download.file("https://dam-api.bfs.admin.ch/hub/api/dam/assets/32007751/master", "input_data/deaths.csv")
deaths <- read_csv("input_data/deaths.csv")
## Rows: 89100 Columns: 5
## ── Column specification ─────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────────
## Delimiter: ","
## chr (3): CANTON, AGE, SEX
## dbl (2): YEAR, OBS_VALUE
## 
## ℹ Use `spec()` to retrieve the full column specification for this data.
## ℹ Specify the column types or set `show_col_types = FALSE` to quiet this message.
colnames(deaths) <- c("year", "canton", "age", "sex", "total_deaths")


deaths <- deaths |> 
  filter(age == "_T") |> 
  filter(canton != "CH") |> 
  filter(sex == "T") |> 
  select(-age, -sex)

deaths
## # A tibble: 1,430 × 3
##     year canton total_deaths
##    <dbl> <chr>         <dbl>
##  1  1969 1              9846
##  2  1969 2              8836
##  3  1969 3              2405
##  4  1969 4               283
##  5  1969 5               830
##  6  1969 6               231
##  7  1969 7               201
##  8  1969 8               431
##  9  1969 9               526
## 10  1969 10             1728
## # ℹ 1,420 more rows
  1. Simplify the births data into just number of births by year. Then join this data with the deaths data. What was the total population change in each canton?
births <- births |> 
  group_by(year, canton_number, canton_name) |> 
  summarize(total_births = sum(total_born))

births
## # A tibble: 1,430 × 4
## # Groups:   year, canton_number [1,430]
##     year canton_number canton_name            total_births
##    <dbl> <chr>         <chr>                         <dbl>
##  1  1969 1             Zürich                        16638
##  2  1969 10            Freiburg                       3187
##  3  1969 11            Solothurn                      3759
##  4  1969 12            Basel-Stadt                    2833
##  5  1969 13            Basel-Landschaft               3958
##  6  1969 14            Schaffhausen                   1170
##  7  1969 15            Appenzell Ausserrhoden          774
##  8  1969 16            Appenzell Innerrhoden           274
##  9  1969 17            St. Gallen                     7229
## 10  1969 18            Graubünden                     2819
## # ℹ 1,420 more rows
deaths <- deaths |>
  rename(canton_number = canton)

birth_and_deaths <- births |> 
  left_join(deaths)
## Joining with `by = join_by(year, canton_number)`
birth_and_deaths
## # A tibble: 1,430 × 5
## # Groups:   year, canton_number [1,430]
##     year canton_number canton_name            total_births total_deaths
##    <dbl> <chr>         <chr>                         <dbl>        <dbl>
##  1  1969 1             Zürich                        16638         9846
##  2  1969 10            Freiburg                       3187         1728
##  3  1969 11            Solothurn                      3759         1907
##  4  1969 12            Basel-Stadt                    2833         2398
##  5  1969 13            Basel-Landschaft               3958         1491
##  6  1969 14            Schaffhausen                   1170          755
##  7  1969 15            Appenzell Ausserrhoden          774          656
##  8  1969 16            Appenzell Innerrhoden           274          192
##  9  1969 17            St. Gallen                     7229         3726
## 10  1969 18            Graubünden                     2819         1570
## # ℹ 1,420 more rows
birth_and_deaths <- birth_and_deaths |> 
  mutate(total_population_change = total_births - total_deaths)

birth_and_deaths
## # A tibble: 1,430 × 6
## # Groups:   year, canton_number [1,430]
##     year canton_number canton_name            total_births total_deaths total_population_change
##    <dbl> <chr>         <chr>                         <dbl>        <dbl>                   <dbl>
##  1  1969 1             Zürich                        16638         9846                    6792
##  2  1969 10            Freiburg                       3187         1728                    1459
##  3  1969 11            Solothurn                      3759         1907                    1852
##  4  1969 12            Basel-Stadt                    2833         2398                     435
##  5  1969 13            Basel-Landschaft               3958         1491                    2467
##  6  1969 14            Schaffhausen                   1170          755                     415
##  7  1969 15            Appenzell Ausserrhoden          774          656                     118
##  8  1969 16            Appenzell Innerrhoden           274          192                      82
##  9  1969 17            St. Gallen                     7229         3726                    3503
## 10  1969 18            Graubünden                     2819         1570                    1249
## # ℹ 1,420 more rows
birth_and_deaths |> 
  filter(year == 2000) |>
  filter(canton_name == "Zürich") |>
  select(total_population_change)
## Adding missing grouping variables: `year`, `canton_number`
## # A tibble: 1 × 3
## # Groups:   year, canton_number [1]
##    year canton_number total_population_change
##   <dbl> <chr>                           <dbl>
## 1  2000 1                                2485
  1. Make a plot of the total births and deaths in Basel-Stadt between 1970 and 2000.
birth_and_deaths |> 
  filter(canton_name == "Basel-Stadt") |>
  select(year, canton_name, total_births, total_deaths) |> 
  pivot_longer(cols = c(total_births, total_deaths), names_to = "event", values_to = "total") |> 
  ggplot(aes(x = year, y = total, color = event)) +
  geom_line()
## Adding missing grouping variables: `canton_number`