2 1990 analyses

2.1 Leaf area in 1990

2.1.2 Model specification

We ran a linear mixed-effects model using lmer. The response was leaf area in 1990. The fixed-effects were sex in 90, severing position, and severing time, and all possible interactions. The random-effects were colony.

We checked and plotted the model residuals:

2.1.4 Conclusion

The best model includes fixed effects of Sever, Sex_90, Time, the Sever x Time interaction, and the Sex_90 x Time interaction.

2.1.5 Estimated marginal means

We are looking at the estimated marginal means for the significant effects:

The main effect of Sex_90:

##  Sex_90 emmean   SE   df lower.CL upper.CL
##  S         599 11.7 42.1      576      623
##  V         394 11.7 42.7      370      418
## 
## Results are averaged over the levels of: Time, Sever 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95

Sexual > Vegetative

The main effect of Sever:

## $emmeans
##  Sever emmean   SE   df lower.CL upper.CL
##  C        503 13.6 75.6      476      530
##  S1       479 13.5 74.6      452      506
##  S2       488 13.6 75.5      461      515
##  S4       517 13.7 78.9      490      544
## 
## Results are averaged over the levels of: Sex_90, Time 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate   SE  df t.ratio p.value
##  C - S1      23.47 13.8 650  1.707  0.3209 
##  C - S2      14.74 13.8 649  1.070  0.7080 
##  C - S4     -14.34 13.9 650 -1.028  0.7329 
##  S1 - S2     -8.73 13.7 650 -0.635  0.9206 
##  S1 - S4    -37.82 13.9 650 -2.721  0.0337 
##  S2 - S4    -29.09 13.9 650 -2.086  0.1586 
## 
## Results are averaged over the levels of: Sex_90, Time 
## Degrees-of-freedom method: satterthwaite 
## P value adjustment: tukey method for comparing a family of 4 estimates

S1 is a bit lower than some of the others, but all of the intervals overlap

The main effect of Time:

## $emmeans
##  Time emmean   SE   df lower.CL upper.CL
##  T1      432 12.6 57.6      407      458
##  T2      519 12.6 56.7      494      544
##  T3      539 12.8 60.5      513      564
## 
## Results are averaged over the levels of: Sex_90, Sever 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate   SE  df t.ratio p.value
##  T1 - T2     -86.4 11.9 650 -7.283  <.0001 
##  T1 - T3    -106.3 12.1 652 -8.782  <.0001 
##  T2 - T3     -19.9 12.0 652 -1.651  0.2252 
## 
## Results are averaged over the levels of: Sex_90, Sever 
## Degrees-of-freedom method: satterthwaite 
## P value adjustment: tukey method for comparing a family of 3 estimates

T1 is lower than T2 and T3

The Sex_90 x Time interaction:

## $emmeans
## Sex_90 = S:
##  Time emmean   SE  df lower.CL upper.CL
##  T1      528 15.1 114      498      558
##  T2      611 15.0 112      581      641
##  T3      659 15.4 122      628      690
## 
## Sex_90 = V:
##  Time emmean   SE  df lower.CL upper.CL
##  T1      337 15.3 117      307      367
##  T2      427 15.2 115      396      457
##  T3      418 15.5 123      388      449
## 
## Results are averaged over the levels of: Sever 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
## Sex_90 = S:
##  contrast estimate   SE  df t.ratio p.value
##  T1 - T2    -83.56 16.7 649 -5.017  <.0001 
##  T1 - T3   -131.37 17.0 650 -7.723  <.0001 
##  T2 - T3    -47.82 16.9 650 -2.822  0.0136 
## 
## Sex_90 = V:
##  contrast estimate   SE  df t.ratio p.value
##  T1 - T2    -89.27 16.9 650 -5.283  <.0001 
##  T1 - T3    -81.24 17.2 651 -4.732  <.0001 
##  T2 - T3      8.03 17.1 651  0.470  0.8853 
## 
## Results are averaged over the levels of: Sever 
## Degrees-of-freedom method: satterthwaite 
## P value adjustment: tukey method for comparing a family of 3 estimates

For each sex, there are bigger differences between T1 and T2,T3; T2 and T3 are more similar to each other

## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## $emmeans
## Time = T1:
##  Sex_90 emmean   SE  df lower.CL upper.CL
##  S         528 15.1 114      498      558
##  V         337 15.3 117      307      367
## 
## Time = T2:
##  Sex_90 emmean   SE  df lower.CL upper.CL
##  S         611 15.0 112      581      641
##  V         427 15.2 115      396      457
## 
## Time = T3:
##  Sex_90 emmean   SE  df lower.CL upper.CL
##  S         659 15.4 122      628      690
##  V         418 15.5 123      388      449
## 
## Results are averaged over the levels of: Sever 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
## Time = T1:
##  contrast estimate   SE  df t.ratio p.value
##  S - V         190 16.8 649 11.298  <.0001 
## 
## Time = T2:
##  contrast estimate   SE  df t.ratio p.value
##  S - V         185 16.7 649 11.058  <.0001 
## 
## Time = T3:
##  contrast estimate   SE  df t.ratio p.value
##  S - V         240 17.3 650 13.918  <.0001 
## 
## Results are averaged over the levels of: Sever 
## Degrees-of-freedom method: satterthwaite

Looking at this the other way, the area generally increases with later severing in both sexes, but T2 and T3 are basically the same for vegetative

The Sever x Time interaction:

## $emmeans
## Sever = C:
##  Time emmean   SE  df lower.CL upper.CL
##  T1      481 19.6 268      443      520
##  T2      496 19.1 248      458      533
##  T3      531 19.3 257      493      569
## 
## Sever = S1:
##  Time emmean   SE  df lower.CL upper.CL
##  T1      372 19.1 248      334      409
##  T2      537 19.2 252      499      575
##  T3      529 19.5 262      490      567
## 
## Sever = S2:
##  Time emmean   SE  df lower.CL upper.CL
##  T1      406 19.3 257      368      444
##  T2      524 19.2 252      486      561
##  T3      534 19.5 262      495      572
## 
## Sever = S4:
##  Time emmean   SE  df lower.CL upper.CL
##  T1      470 19.2 252      432      508
##  T2      519 19.2 252      482      557
##  T3      561 20.6 303      521      602
## 
## Results are averaged over the levels of: Sex_90 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
## Sever = C:
##  contrast estimate   SE  df t.ratio p.value
##  T1 - T2    -14.01 23.9 650 -0.586  0.8276 
##  T1 - T3    -49.34 24.1 650 -2.046  0.1021 
##  T2 - T3    -35.34 23.7 650 -1.492  0.2953 
## 
## Sever = S1:
##  contrast estimate   SE  df t.ratio p.value
##  T1 - T2   -165.05 23.6 649 -7.007  <.0001 
##  T1 - T3   -156.89 23.8 650 -6.597  <.0001 
##  T2 - T3      8.16 23.9 650  0.342  0.9377 
## 
## Sever = S2:
##  contrast estimate   SE  df t.ratio p.value
##  T1 - T2   -117.25 23.8 650 -4.932  <.0001 
##  T1 - T3   -127.60 24.0 650 -5.316  <.0001 
##  T2 - T3    -10.35 23.9 650 -0.433  0.9018 
## 
## Sever = S4:
##  contrast estimate   SE  df t.ratio p.value
##  T1 - T2    -49.36 23.7 649 -2.086  0.0935 
##  T1 - T3    -91.40 24.8 651 -3.690  0.0007 
##  T2 - T3    -42.04 24.8 651 -1.697  0.2072 
## 
## Results are averaged over the levels of: Sex_90 
## Degrees-of-freedom method: satterthwaite 
## P value adjustment: tukey method for comparing a family of 3 estimates

For controls, timing of severing doesn’t matter For S1 and also S2, severing early (T1) yields lower leaf area than severing later (T2 or T3) For S4, severing earliest (T1) yields lower leaf area than severing latest (T3)

Making plots for the MS:

## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
##This is using the raw values

g1 <- ggplot(data=may) + 
  geom_boxplot(aes(x=Sex_90, y=Lf_90, fill=Time, linetype=Sex_90)) + scale_linetype(guide=FALSE) +scale_fill_discrete(guide=FALSE)+ 
  ylab("Leaf area in 1990")+ xlab("Sex in 1990")+ ggtitle("The sex x time interaction")+ 
  theme_bw()+theme(plot.title = element_text(face="italic"))+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

g2 <- ggplot(data=may) + 
  geom_boxplot(aes(x=Time, y=Lf_90, fill=Time)) +ylab("")+ ggtitle("The main effect of time")+
  theme_bw()+theme(plot.title = element_text(face="italic"))+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

g3 <- ggplot(data=may) + 
  geom_boxplot(aes(x=Sex_90, y=Lf_90, linetype=Sex_90)) + ylab("")+ xlab("Sex in 1990")+
  ggtitle("The main effect of sex")+
  theme_bw()+theme(plot.title = element_text(face="italic"))+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

g4 <- ggplot(data=may) + 
  geom_boxplot(aes(x=Sever, y=Lf_90, fill=Time, color=Sever)) + scale_color_discrete(guide=FALSE) +scale_fill_discrete(guide=FALSE)+ 
  ylab("Leaf area in 1990")+ xlab("Severing location")+ggtitle("The sever x time interaction")+
  theme_bw()+theme(plot.title = element_text(face="italic"))+theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())

g5 <- ggplot(data=may) + 
  geom_boxplot(aes(x=Sever, y=Lf_90, color=Sever)) + ylab("")+ xlab("Severing location")+ ggtitle("The main effect of sever")+
  theme_bw()+theme(plot.title = element_text(face="italic")) +theme(panel.grid.major = element_blank(), panel.grid.minor = element_blank())


#lay <- rbind(c(1,2),
       #      c(NA,3),
      #       c(4,5))

#gridExtra::grid.arrange(
#  g1, g2, g3,g4, g5,
 # layout_matrix = lay)



library("cowplot")
## 
## ********************************************************
## Note: As of version 1.0.0, cowplot does not change the
##   default ggplot2 theme anymore. To recover the previous
##   behavior, execute:
##   theme_set(theme_cowplot())
## ********************************************************
## 
## Attaching package: 'cowplot'
## The following object is masked from 'package:ggeffects':
## 
##     get_title

2.2 Senescence

The second question we addressed was: do sex, severing treatment, severing time, or any interactions affect time of senescence in 1990? Here’s a summary of that data

2.2.2 Pilot analysis with the controls

First, we wanted to look at whether sex and leaf area have any effect on senescence in the control plants.

## Linear mixed model fit by REML. t-tests use Satterthwaite's method [
## lmerModLmerTest]
## Formula: Sen1_90 ~ Sex_90 * Lf_90 + (1 | COLONY)
##    Data: may.c
## 
## REML criterion at convergence: 694.4
## 
## Scaled residuals: 
##     Min      1Q  Median      3Q     Max 
## -2.6244 -0.6998  0.1711  0.6648  1.7879 
## 
## Random effects:
##  Groups   Name        Variance Std.Dev.
##  COLONY   (Intercept) 1.056    1.028   
##  Residual             2.422    1.556   
## Number of obs: 171, groups:  COLONY, 30
## 
## Fixed effects:
##                 Estimate Std. Error         df t value Pr(>|t|)    
## (Intercept)    5.598e+00  7.542e-01  1.666e+02   7.422 5.62e-12 ***
## Sex_90V       -1.723e-01  1.077e+00  1.542e+02  -0.160    0.873    
## Lf_90          1.364e-03  1.177e-03  1.568e+02   1.159    0.248    
## Sex_90V:Lf_90 -3.776e-04  2.282e-03  1.554e+02  -0.165    0.869    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Correlation of Fixed Effects:
##             (Intr) Sx_90V Lf_90 
## Sex_90V     -0.640              
## Lf_90       -0.943  0.641       
## Sx_90V:L_90  0.466 -0.955 -0.493

Here are the residuals from that model

And here is the summary of data from just the control plants

## Type III Analysis of Variance Table with Satterthwaite's method
##               Sum Sq Mean Sq NumDF  DenDF F value Pr(>F)
## Sex_90       0.06198 0.06198     1 154.17  0.0256 0.8731
## Lf_90        2.45628 2.45628     1 160.12  1.0140 0.3155
## Sex_90:Lf_90 0.06634 0.06634     1 155.39  0.0274 0.8688

Conclusion: while the sexes occupy different ranges of leaf areas, there isn’t a relationship between leaf area and sensecence time overall

2.2.4 Model results

Model name Main effects AIC vs model, what is this testing Chi-sq P
mod90s full model 2710.9 mod90s., sig of the three-way int. 5.3027 0.5056
mod90s. all two-ways 2704.2 mod90s.a, sig of the sex x sever int. 1.3734 0.7118
mod90s.b, sig of the sex x time int. 2.1507 0.3412
mod90s.c, sig of the sever x time ints 4.9642 0.5484
mod90s.a sex x time and sever x time ints 2699.6 mod90s.e, sig of the sever x time 4.9416 0.5513
mod90s.f, sig of the sex x time 2.2096 0.3313
mod90s.b sex x sever and sever x time ints 2702.4 mod90s.d, sig of the sever x time int 4.9835 0.5459
mod90s.f, sig of the sex x sever int 1.4324 0.698
mod90s.c sex x sever and sex x time ints 2697.2 mod90s.e, sig of the sex x sever int 1.3508 0.7171
mod90s.d, sig of the sex x tim int 2.1699 0.3379
mod90s.d sex x sever int, and time 2695.4 mod90s.g, sig of the sex x sever int 1.406 0.7267
mod90s.e sex x time int, and sever 2692.6 mod90s.g, sig of the sex x time int 2.2252 0.3287
mod90s.f sever x time int, and sex 2697.8 mod90s.g, sig of the sever x time int 4.9571 0.5493
mod90s.g no interactions, all fixed effects 2690.8 mod90s.h, sig of sex 33.906 5.754e-09 ***
mod90s.i, sig of sever 5.2654 0.1534
mod90s.j, sig of time 36.499 1.187e-08 ***
mod90s.h sever and time 2722.7 mod90s.l, sig of sever 5.0036 0.1715
mod90s.k, sig of time 34.358 3.461e-08 ***
mod90s.i sex and time 2690.1 mod90s.m, sig of time 78.992 1.081e-08 ***
mod90s.l, sig of sex 33.654 6.583e-09 ***
mod90s.j sex and sever 2723.3 mod90s.k, sig of sex 31.776 1.73e-08 ***
mod90s.m, sig of sever 5.4516 0.1416
mod90s.k sever 2753.1 mod90s.n, sig of sever 5.1944 0.1581
mod90s.l time 2721.7 mod90s.n, sig of time 34.549 3.146e-08 ***
mod90s.m sex 2722.7 mod90s.n, sig of sex 31.519 1.975e-08 ***
mod90s.n random effect only 2752.3

2.2.5 Conclusions

The best model has fixed effects of sex and time.

2.2.6 Estimated marginal means

For Sex:

##  Sex_90 emmean    SE   df lower.CL upper.CL
##  S        7.15 0.184 37.1     6.78     7.52
##  V        6.42 0.184 37.4     6.05     6.80
## 
## Results are averaged over the levels of: Sever, Time 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95

Sexual systems senesce later

For Time:

##  Time emmean    SE   df lower.CL upper.CL
##  T1     6.31 0.194 46.1     5.92     6.70
##  T2     6.79 0.193 45.6     6.40     7.18
##  T3     7.26 0.196 48.1     6.86     7.65
## 
## Results are averaged over the levels of: Sex_90, Sever 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95

Intervals are overlapping but T3 systems senesce later

2.3 Fruit Production

We wanted to analyze fruit production but cannot because all of the sexual shoots failed to fruit in 1990.