4 1991 back shoot analyses

4.1 Back shoot production

This analysis uses all systems observed in 1991.

4.1.1 Data & visualization

Read in data

Select variables from the back of the system. Also filtering out rows that don’t have a leaf area record in 1990. We need to do this in order to be able to compare models from model set A (which don’t include leaf area, and so wouldn’t naturally be affected by the missing data) with models from model set B (which do include leaf area and would be affected by the missing data). In other words, removing these rows means that model set A and model set B will run using the exact same dataset, which is necessary in order for us to compare the models.

Creating the dead/alive binary and visualizing:

4.1.2 Model selection with leaf area

From this round of model selection, when Lf_90 is required to be in the models that are considered, the best model contains Lf_90, Sever, and Time.

4.1.4 Conclusion

The best model for the production of a back shoot in 1991 contains fixed effects of Sever, Time, and Lf_90.

4.1.5 Estimated marginal means

The main effect of severing

## $emmeans
##  Sever    prob      SE  df lower.CL upper.CL
##  C     0.00382 0.00388 671 0.000518   0.0276
##  S1    0.78068 0.03886 671 0.695090   0.8475
##  S2    0.57489 0.05008 671 0.474881   0.6691
##  S4    0.18015 0.03532 671 0.120800   0.2600
## 
## Results are averaged over the levels of: Time 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
##  contrast odds.ratio      SE  df t.ratio p.value
##  C / S1      0.00108 0.00112 671 -6.581  <.0001 
##  C / S2      0.00284 0.00292 671 -5.697  <.0001 
##  C / S4      0.01746 0.01794 671 -3.940  0.0005 
##  S1 / S2     2.63215 0.66997 671  3.802  0.0009 
##  S1 / S4    16.19948 4.85008 671  9.302  <.0001 
##  S2 / S4     6.15447 1.68975 671  6.619  <.0001 
## 
## Results are averaged over the levels of: Time 
## P value adjustment: tukey method for comparing a family of 4 estimates 
## Tests are performed on the log odds ratio scale

The treatments were significantly different in their production of back shoots. From greatest to least: S1, S2, S4, C.

The main effect of time

## $emmeans
##  Time  prob     SE  df lower.CL upper.CL
##  T1   0.154 0.0432 671   0.0869    0.259
##  T2   0.370 0.0747 671   0.2385    0.524
##  T3   0.130 0.0380 671   0.0721    0.225
## 
## Results are averaged over the levels of: Sever 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
##  contrast odds.ratio     SE  df t.ratio p.value
##  T1 / T2        0.31 0.0846 671 -4.293  0.0001 
##  T1 / T3        1.22 0.3272 671  0.724  0.7492 
##  T2 / T3        3.92 1.0752 671  4.973  <.0001 
## 
## Results are averaged over the levels of: Sever 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## Tests are performed on the log odds ratio scale

Systems severed at T1 and T3 were equally likely to produce a back shoot. Systems severed at T2 were most likely to produce a back shoot.

The main effect of leaf area

4.2 Leaf area

4.2.4 Estimated marginal means

the main effect of sex

## Warning: Ignoring unknown parameters: fun.y
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## $emmeans
##  Sex_90 emmean   SE  df lower.CL upper.CL
##  S         249 37.5 177      175      323
##  V         196 38.2 175      120      271
## 
## Results are averaged over the levels of: Sever, Time 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate   SE  df t.ratio p.value
##  S - V        53.4 24.5 174 2.181   0.0305 
## 
## Results are averaged over the levels of: Sever, Time 
## Degrees-of-freedom method: satterthwaite
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## No summary function supplied, defaulting to `mean_se()`

the main effect of time

## Warning: Ignoring unknown parameters: fun.y
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## $emmeans
##  Time emmean   SE  df lower.CL upper.CL
##  T1      175 40.3 177     95.4      254
##  T2      287 35.7 174    216.5      358
##  T3      205 41.2 179    124.1      287
## 
## Results are averaged over the levels of: Sex_90, Sever 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate   SE  df t.ratio p.value
##  T1 - T2    -112.2 25.5 174 -4.404  0.0001 
##  T1 - T3     -30.6 30.0 174 -1.020  0.5654 
##  T2 - T3      81.5 26.5 165  3.081  0.0068 
## 
## Results are averaged over the levels of: Sex_90, Sever 
## Degrees-of-freedom method: satterthwaite 
## P value adjustment: tukey method for comparing a family of 3 estimates
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## No summary function supplied, defaulting to `mean_se()`

Systems severed at T2 produce more leaf area than systems severed at T1 or T3, which are equivalent.

the main effect of sever

## Warning: Ignoring unknown parameters: fun.y
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## $emmeans
##  Sever emmean    SE    df lower.CL upper.CL
##  C        195 133.7 177.1    -69.3      459
##  S1       379  15.8  74.2    347.6      411
##  S2       248  18.7 109.0    210.9      285
##  S4        68  29.1 165.9     10.6      125
## 
## Results are averaged over the levels of: Sex_90, Time 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate    SE  df t.ratio p.value
##  C - S1     -184.5 134.2 176 -1.375  0.5166 
##  C - S2      -53.4 134.5 177 -0.397  0.9787 
##  C - S4      126.7 135.3 175  0.936  0.7854 
##  S1 - S2     131.1  21.8 168  6.017  <.0001 
##  S1 - S4     311.2  30.9 172 10.084  <.0001 
##  S2 - S4     180.0  31.2 169  5.775  <.0001 
## 
## Results are averaged over the levels of: Sex_90, Time 
## Degrees-of-freedom method: satterthwaite 
## P value adjustment: tukey method for comparing a family of 4 estimates
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## No summary function supplied, defaulting to `mean_se()`

Systems in the control and S4 treatment groups had equally little leaf area in the back. Systems in the S1 treatment had the most leaf area, followed by the S2 systems.

These analyses include the systems with zero leaf area ### Data & visualization

4.2.6 Model selection without leaf area

## Fixed term is "(Intercept)"
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## boundary (singular) fit: see ?isSingular
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## boundary (singular) fit: see ?isSingular
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## fixed-effect model matrix is rank deficient so dropping 1 column / coefficient
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 2 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 6 columns / coefficients
## fixed-effect model matrix is rank deficient so dropping 6 columns / coefficients

From this round of model selection, when lf_90 is not required to be in the models that are considered, the same best model is returned.

4.2.7 Conclusion

## fixed-effect model matrix is rank deficient so dropping 3 columns / coefficients

The best model for 1991 back leaf area contains fixed effects of Lf_90, Sever, Sex_90, Time, Sever x Sex_90, and Sever x Time

4.2.8 Estimated marginal means

the sex x sever interaction

## Warning: Ignoring unknown parameters: fun.y
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## $emmeans
## Sever = C:
##  Sex_90 emmean   SE  df lower.CL upper.CL
##  S      nonEst   NA  NA       NA       NA
##  V      nonEst   NA  NA       NA       NA
## 
## Sever = S1:
##  Sex_90 emmean   SE  df lower.CL upper.CL
##  S       423.7 21.4 132    381.3      466
##  V       338.2 23.0 139    292.7      384
## 
## Sever = S2:
##  Sex_90 emmean   SE  df lower.CL upper.CL
##  S       263.9 23.0 142    218.5      309
##  V       217.4 28.8 169    160.5      274
## 
## Sever = S4:
##  Sex_90 emmean   SE  df lower.CL upper.CL
##  S        61.1 51.0 178    -39.6      162
##  V        85.9 60.0 179    -32.5      204
## 
## Results are averaged over the levels of: Time 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
## Sever = C:
##  contrast estimate   SE  df t.ratio p.value
##  S - V      nonEst   NA  NA     NA      NA 
## 
## Sever = S1:
##  contrast estimate   SE  df t.ratio p.value
##  S - V        85.5 31.4 175  2.724  0.0071 
## 
## Sever = S2:
##  contrast estimate   SE  df t.ratio p.value
##  S - V        46.5 34.1 172  1.362  0.1750 
## 
## Sever = S4:
##  contrast estimate   SE  df t.ratio p.value
##  S - V       -24.9 52.6 168 -0.473  0.6371 
## 
## Results are averaged over the levels of: Time 
## Degrees-of-freedom method: satterthwaite
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## No summary function supplied, defaulting to `mean_se()`
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 row(s) containing missing values (geom_path).
## Warning: Removed 2 rows containing missing values (geom_segment).

Sexual systems produce a lot more leaf area than vegetative systems for the controls, S1, and S2. This difference is marginally significant at S4.

the sever x time interaction

## Warning: Ignoring unknown parameters: fun.y
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## $emmeans
## Sever = C:
##  Time emmean    SE  df lower.CL upper.CL
##  T1   nonEst    NA  NA       NA       NA
##  T2   nonEst    NA  NA       NA       NA
##  T3   nonEst    NA  NA       NA       NA
## 
## Sever = S1:
##  Time emmean    SE  df lower.CL upper.CL
##  T1    290.9  26.1 159    239.4      342
##  T2    454.4  22.9 155    409.2      500
##  T3    397.5  26.5 162    345.2      450
## 
## Sever = S2:
##  Time emmean    SE  df lower.CL upper.CL
##  T1    245.1  31.5 171    183.0      307
##  T2    314.3  22.7 153    269.4      359
##  T3    162.6  39.2 179     85.3      240
## 
## Sever = S4:
##  Time emmean    SE  df lower.CL upper.CL
##  T1     84.2  57.2 177    -28.6      197
##  T2    118.3  30.0 172     59.1      178
##  T3     18.0 131.0 179   -240.5      277
## 
## Results are averaged over the levels of: Sex_90 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
## Sever = C:
##  contrast estimate    SE  df t.ratio p.value
##  T1 - T2    nonEst    NA  NA     NA      NA 
##  T1 - T3    nonEst    NA  NA     NA      NA 
##  T2 - T3    nonEst    NA  NA     NA      NA 
## 
## Sever = S1:
##  contrast estimate    SE  df t.ratio p.value
##  T1 - T2    -163.5  33.7 171 -4.850  <.0001 
##  T1 - T3    -106.6  35.6 171 -2.996  0.0088 
##  T2 - T3      56.9  32.8 164  1.736  0.1948 
## 
## Sever = S2:
##  contrast estimate    SE  df t.ratio p.value
##  T1 - T2     -69.2  37.1 173 -1.868  0.1511 
##  T1 - T3      82.5  48.9 174  1.685  0.2137 
##  T2 - T3     151.7  43.2 168  3.514  0.0016 
## 
## Sever = S4:
##  contrast estimate    SE  df t.ratio p.value
##  T1 - T2     -34.1  63.3 167 -0.539  0.8523 
##  T1 - T3      66.2 142.1 179  0.466  0.8874 
##  T2 - T3     100.3 134.5 179  0.746  0.7366 
## 
## Results are averaged over the levels of: Sex_90 
## Degrees-of-freedom method: satterthwaite 
## P value adjustment: tukey method for comparing a family of 3 estimates
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## No summary function supplied, defaulting to `mean_se()`
## Warning: Removed 3 rows containing missing values (geom_point).
## Warning: Removed 3 row(s) containing missing values (geom_path).
## Warning: Removed 3 rows containing missing values (geom_segment).

For systems severed at S1, leaf area is greatest for T2, intermediate for T3 and lowest for T1. For systems severed at S2, leaf area is greater at T2 than T1 or T3, which are equivalent.

the main effect of sex

## Warning: Ignoring unknown parameters: fun.y
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Sex_90 emmean SE df asymp.LCL asymp.UCL
##  S      nonEst NA NA        NA        NA
##  V      nonEst NA NA        NA        NA
## 
## Results are averaged over the levels of: Sever, Time 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate SE df z.ratio p.value
##  S - V      nonEst NA NA NA      NA     
## 
## Results are averaged over the levels of: Sever, Time 
## Degrees-of-freedom method: satterthwaite
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## No summary function supplied, defaulting to `mean_se()`
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 row(s) containing missing values (geom_path).
## Warning: Removed 2 rows containing missing values (geom_segment).

Sexual systems have more leaf area than vegetative systems (raw data), but in the emmeans, which take leaf area in 1990 into account, this difference is not significant.

the main effect of time

## Warning: Ignoring unknown parameters: fun.y
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Time emmean   SE  df lower.CL upper.CL
##  T1   nonEst   NA  NA       NA       NA
##  T2      274 35.1 173      204      343
##  T3   nonEst   NA  NA       NA       NA
## 
## Results are averaged over the levels of: Sex_90, Sever 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate SE df z.ratio p.value
##  T1 - T2    nonEst NA NA NA      NA     
##  T1 - T3    nonEst NA NA NA      NA     
##  T2 - T3    nonEst NA NA NA      NA     
## 
## Results are averaged over the levels of: Sex_90, Sever 
## Degrees-of-freedom method: satterthwaite 
## P value adjustment: tukey method for comparing a family of 3 estimates
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## No summary function supplied, defaulting to `mean_se()`
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 row(s) containing missing values (geom_path).
## geom_path: Each group consists of only one observation. Do you need to adjust
## the group aesthetic?
## Warning: Removed 2 rows containing missing values (geom_segment).

Systems severed at T2 produce more leaf area than systems severed at T1 or T3, which are equivalent.

the main effect of sever

## Warning: Ignoring unknown parameters: fun.y
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## $emmeans
##  Sever emmean   SE    df lower.CL upper.CL
##  C     nonEst   NA    NA       NA       NA
##  S1     380.9 15.8  68.4    349.5      412
##  S2     240.7 19.7 114.1    201.7      280
##  S4      73.5 49.1 177.8    -23.4      170
## 
## Results are averaged over the levels of: Sex_90, Time 
## Degrees-of-freedom method: satterthwaite 
## Confidence level used: 0.95 
## 
## $contrasts
##  contrast estimate   SE  df t.ratio p.value
##  C - S1     nonEst   NA  NA    NA       NA 
##  C - S2     nonEst   NA  NA    NA       NA 
##  C - S4     nonEst   NA  NA    NA       NA 
##  S1 - S2       140 22.3 168 6.285   <.0001 
##  S1 - S4       307 50.5 179 6.094   <.0001 
##  S2 - S4       167 51.6 178 3.239   0.0078 
## 
## Results are averaged over the levels of: Sex_90, Time 
## Degrees-of-freedom method: satterthwaite 
## P value adjustment: tukey method for comparing a family of 4 estimates
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## No summary function supplied, defaulting to `mean_se()`
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 row(s) containing missing values (geom_path).
## Warning: Removed 1 rows containing missing values (geom_segment).

Systems in the control and S4 treatment groups had equally little leaf area in the back. Systems in the S1 treatment had the most leaf area, followed by the S2 systems.

the main effect of leaf area in 1990

For systems severed at S1 or S2, there is a generally positive relationship between leaf area in the front in 1990 and leaf area in the back in 1991. The differences between sexual and vegetative systems appear larger at S1 and S2 relative to S4 and the control.

plots for MS

## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## NOTE: Results may be misleading due to involvement in interactions
## Cannot use mode = "kenward-roger" because *pbkrtest* package is not installed
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 row(s) containing missing values (geom_path).
## Warning: Removed 2 rows containing missing values (geom_segment).
## Warning: Removed 3 rows containing missing values (geom_point).
## Warning: Removed 3 row(s) containing missing values (geom_path).
## Warning: Removed 3 rows containing missing values (geom_segment).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 row(s) containing missing values (geom_path).
## Warning: Removed 2 rows containing missing values (geom_segment).
## Warning: Removed 1 rows containing missing values (geom_point).
## Warning: Removed 1 row(s) containing missing values (geom_path).
## Warning: Removed 1 rows containing missing values (geom_segment).
## Warning: Removed 2 rows containing missing values (geom_point).
## Warning: Removed 2 row(s) containing missing values (geom_path).
## geom_path: Each group consists of only one observation. Do you need to adjust
## the group aesthetic?
## Warning: Removed 2 rows containing missing values (geom_segment).
## Warning: Removed 6 rows containing missing values (geom_point).
## Warning: Removed 6 row(s) containing missing values (geom_path).
## Warning: Removed 6 rows containing missing values (geom_segment).

4.3 Branching

4.3.2 Model selection with leaf area

cond((Int)) disp((Int)) cond(Lf_90) cond(Sever) cond(Sex_90) cond(Time) cond(Sever:Sex_90) df logLik AICc delta weight
8 -7.919347
0.0018494
NA 8 -32.62054 82.09314 0.0000000 0.408810786
4 -2.837691
0.0011234
NA NA 6 -35.01578 82.52278 0.4296347 0.329783070
2 -4.193048
0.0029514
NA NA NA 5 -37.56321 85.47525 3.3821071 0.075354140
6 -4.338055
0.0033438
NA
NA 7 -35.76591 86.19065 4.0975010 0.052694016
16 -7.742156
0.0019329
10 -32.55770 86.43277 4.3396214 0.046685878
12 -2.893553
0.0011944
NA
8 -34.81249 86.47705 4.3839039 0.045663554
7 -3.143551
0.0005370 NA
NA 6 -37.84619 88.18361 6.0904619 0.019453393
5 -4.206869
0.0023650 NA NA
NA 5 -39.65179 89.65241 7.5592641 0.009333596
3 -3.106581
0.0008878 NA
NA NA 4 -40.86409 89.95940 7.8662516 0.008005482
1 -4.205829
0.0022635 NA NA NA NA 3 -42.55195 91.24183 9.1486910 0.004216085

From this round of model selection, when Lf_90 is required to be in the models that are considered, there are two models within 2 AICc units: (1) Lf_90, Sever, Sex_90, and Time (AICc 82.1); (2) Lf_90, Sever, and Sex_90 (AICc 82.5).

4.3.3 Model selection without leaf area

cond((Int)) disp((Int)) cond(Lf_90) cond(Sever) cond(Sex_90) cond(Time) cond(Sever:Sex_90) df logLik AICc delta weight
15 -6.954342
NA
NA 7 -32.70228 80.06339 0.0000000 0.35424997
7 -2.112184
NA
NA NA 5 -35.14097 80.63077 0.5673806 0.26675016
16 -7.919347
0.0018494
NA 8 -32.62054 82.09314 2.0297555 0.12839675
8 -2.837691
0.0011234
NA NA 6 -35.01578 82.52278 2.4593902 0.10357621
31 -2.886490
NA
9 -32.74997 84.57138 4.5079876 0.03718885
23 -2.120587
NA
NA
7 -34.95681 84.57244 4.5090478 0.03716914
4 -4.193048
0.0029514
NA NA NA 5 -37.56321 85.47525 5.4118626 0.02366676
13 -2.865559
NA NA
NA 5 -37.87598 86.10080 6.0374107 0.01731023
12 -4.338055
0.0033438
NA
NA 7 -35.76591 86.19065 6.1272565 0.01654981
3 -2.462958
NA
NA NA NA 4 -39.06861 86.36843 6.3050447 0.01514212

From this round of model selection, when Lf_90 is not required to be in the models that are considered, there are two models within 2 AICc units: (1) Sever, Sex_90, and Time (AICc 80.1); (2) Sever and Sex_90 (AICc 80.6).

4.3.4 Conclusion

The simplest model with the lowest AICc includes fixed effects of Sever and Sex_90.

4.3.5 Estimated marginal means

Below are the relevant visualizations of the best model:

the main effect of sex

## $emmeans
##  Sex_90     prob      SE  df lower.CL upper.CL
##  S      2.79e-04 0.08561 173 2.22e-16        1
##  V      2.36e-05 0.00722 173 2.22e-16        1
## 
## Results are averaged over the levels of: Sever 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
##  contrast odds.ratio   SE  df t.ratio p.value
##  S / V          11.9 13.8 173 2.123   0.0352 
## 
## Results are averaged over the levels of: Sever 
## Tests are performed on the log odds ratio scale

Sexual systems in 1990 were more likely to have branches in the back system in 1991.

the main effect of sever

## $emmeans
##  Sever    prob       SE  df lower.CL upper.CL
##  S1    0.03393 3.63e-02 173 3.93e-03    0.238
##  S2    0.00322 5.78e-03 173 9.25e-05    0.101
##  S4    0.00000 4.33e-06 173 0.00e+00    1.000
## 
## Results are averaged over the levels of: Sex_90 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
##  contrast odds.ratio       SE  df t.ratio p.value
##  S1 / S2          11 1.20e+01 173 2.177   0.0780 
##  S1 / S4     7457316 6.86e+09 173 0.017   0.9998 
##  S2 / S4      685949 6.31e+08 173 0.015   0.9999 
## 
## Results are averaged over the levels of: Sex_90 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## Tests are performed on the log odds ratio scale

S1 systems are somewhat more likely than S2 systems to branch. I think there were no S4 systems that branched, which makes the comparisons challenging.

4.4 Sexual status

4.4.2 Model selection with leaf area, global model 1

cond((Int)) disp((Int)) cond(Lf_90) cond(Sever) cond(Sex_90) cond(Time) cond(Sever:Sex_90) df logLik AICc delta weight
8 -5.717898
0.0040367
NA 8 -46.18920 108.9544 0.000000 7.097358e-01
16 -5.758167
0.0041612
10 -45.06359 111.0143 2.059868 2.533973e-01
6 -7.219901
0.0065515
NA
NA 7 -50.21170 114.8696 5.915203 3.686606e-02
7 -5.384957
0.0028126 NA
NA 6 -62.29796 136.9293 27.974845 5.976355e-07
5 -6.371715
0.0042211 NA NA
NA 5 -64.38273 139.0026 30.048206 2.119394e-07
4 -3.170869
0.0034587
NA NA 6 -69.41181 151.1570 42.202553 4.863273e-10
2 -4.219714
0.0046840
NA NA NA 5 -70.71533 151.6678 42.713409 3.767019e-10
12 -3.174440
0.0035024
NA
8 -68.97898 154.5340 45.579549 8.987181e-11
3 -3.796268
0.0031994 NA
NA NA 4 -77.86262 163.8827 54.928303 8.386239e-13
1 -4.583886
0.0040985 NA NA NA NA 3 -78.92349 163.9411 54.986685 8.144977e-13

From this round of model selection, when Lf_90 is required to be in the models that are considered, the best model contains fixed effects of Lf_90, Sever, Sex_90, and Time.

4.4.3 Model selection without leaf area, global model 1

cond((Int)) disp((Int)) cond(Lf_90) cond(Sever) cond(Sex_90) cond(Time) cond(Sever:Sex_90) df logLik AICc delta weight
16 -5.717898
0.0040367
NA 8 -46.18920 108.9544 0.000000 5.331288e-01
32 -5.758167
0.0041612
10 -45.06359 111.0143 2.059868 1.903432e-01
15 -3.641204
NA
NA 7 -48.32295 111.0921 2.137713 1.830769e-01
31 -3.676316
NA
9 -47.20888 113.1407 4.186245 6.573558e-02
12 -7.219901
0.0065515
NA
NA 7 -50.21170 114.8696 5.915203 2.769250e-02
11 -4.125660
NA
NA
NA 6 -58.39689 129.1271 20.172709 2.220158e-05
14 -5.384957
0.0028126 NA
NA 6 -62.29796 136.9293 27.974845 4.489229e-07
13 -3.909540
NA NA
NA 5 -64.24656 138.7303 29.775862 1.824257e-07
10 -6.371715
0.0042211 NA NA
NA 5 -64.38273 139.0026 30.048206 1.592015e-07
9 -4.425548
NA NA NA
NA 4 -70.31444 148.7864 39.831946 1.195184e-09

From this round of model selection, when Lf_90 is not required to be in the models that are considered, the same best model is returned

4.4.4 Conclusion from global model 1

The best model has main effects of Lf_90, Sex_90, Sever, and Time.

4.4.5 Estimated marginal means

the main effect of sex

## $emmeans
##  Sex_90     prob      SE  df lower.CL upper.CL
##  S      0.006167 0.00669 251 7.23e-04   0.0505
##  V      0.000708 0.00104 251 3.93e-05   0.0126
## 
## Results are averaged over the levels of: Sever, Time 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
##  contrast odds.ratio   SE  df t.ratio p.value
##  S / V          8.76 7.37 251 2.579   0.0105 
## 
## Results are averaged over the levels of: Sever, Time 
## Tests are performed on the log odds ratio scale

Sexual systems in 1990 are more likely to have a sexual shoot in the back system in 1991.

the main effect of sever

## $emmeans
##  Sever     prob       SE  df lower.CL upper.CL
##  S1    0.025146 0.020383 251 4.99e-03   0.1171
##  S2    0.000752 0.001167 251 3.53e-05   0.0158
##  S4    0.000475 0.000797 251 1.74e-05   0.0128
## 
## Results are averaged over the levels of: Sex_90, Time 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
##  contrast odds.ratio    SE  df t.ratio p.value
##  S1 / S2       34.30 34.64 251 3.500   0.0016 
##  S1 / S4       54.32 69.70 251 3.113   0.0058 
##  S2 / S4        1.58  2.03 251 0.359   0.9315 
## 
## Results are averaged over the levels of: Sex_90, Time 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## Tests are performed on the log odds ratio scale

S1 systems are most likely to have sexual shoots in the back. S2 and S4 systems are equivalent, and not likely to have sexual shoots in the back.

the main effect of time

## $emmeans
##  Time     prob      SE  df lower.CL upper.CL
##  T1   0.000712 0.00121 251 2.50e-05  0.01990
##  T2   0.046913 0.03140 251 1.22e-02  0.16404
##  T3   0.000263 0.00048 251 7.15e-06  0.00956
## 
## Results are averaged over the levels of: Sex_90, Sever 
## Confidence level used: 0.95 
## Intervals are back-transformed from the logit scale 
## 
## $contrasts
##  contrast odds.ratio     SE  df t.ratio p.value
##  T1 / T2      0.0145   0.02 251 -3.060  0.0069 
##  T1 / T3      2.7140   4.47 251  0.606  0.8169 
##  T2 / T3    187.4382 272.25 251  3.603  0.0011 
## 
## Results are averaged over the levels of: Sex_90, Sever 
## P value adjustment: tukey method for comparing a family of 3 estimates 
## Tests are performed on the log odds ratio scale

Systems severed at T2 are much more likely to have sexual shoots in the back. T1 and T3 are equivalent, and not likely to have sexual shoots in the back.

the main effect of leaf area