10 Exploratory Data Analysis at Scale
<- 'C:/Users/jkyle/Documents/GitHub/Jeff_Data_Wrangling/Week_4/DATA'
Wk4_Data
library('kableExtra')
library('tidyverse')
#> -- Attaching packages --------------------------------------- tidyverse 1.3.1 --
#> v ggplot2 3.3.3 v purrr 0.3.4
#> v tibble 3.1.2 v dplyr 1.0.6
#> v tidyr 1.1.3 v stringr 1.4.0
#> v readr 1.4.0 v forcats 0.5.1
#> -- Conflicts ------------------------------------------ tidyverse_conflicts() --
#> x dplyr::filter() masks stats::filter()
#> x dplyr::group_rows() masks kableExtra::group_rows()
#> x dplyr::lag() masks stats::lag()
<- readRDS(file.path(Wk4_Data,'A_DATA_2.RDS'))
A_DATA_2
<- readRDS(file.path(Wk4_Data,'A_DATA_TBL_2.t_ks_result.furrr.RDS'))
A_DATA_TBL_2.t_ks_result.furrr
<- readRDS(file.path(Wk4_Data,'FEATURE_TYPE.RDS'))
FEATURE_TYPE
<- FEATURE_TYPE$numeric_features
numeric_features <- FEATURE_TYPE$categorical_features categorical_features
\(~\)
\(~\)
10.1 Investigate Results
We can make make our results scroll-able if we use kableExtra
:
%>%
A_DATA_TBL_2.t_ks_result.furrr select(Feature, mean_diff_est , ttest.pvalue, kstest.pvalue, N_Target, mean_Target, sd_Target, N_Control, mean_Control, sd_Control) %>%
mutate(across(where(is.numeric), round, 3)) %>%
::kbl() %>% # kableExtra from here down
kableExtrakable_paper() %>%
scroll_box(width = "100%", height = "200px")
Feature | mean_diff_est | ttest.pvalue | kstest.pvalue | N_Target | mean_Target | sd_Target | N_Control | mean_Control | sd_Control |
---|---|---|---|---|---|---|---|---|---|
PHAFSTHR | 0.403 | 0.000 | 0.000 | 2002 | 11.331 | 3.756 | 17227 | 10.928 | 3.542 |
BPXML1 | 15.089 | 0.000 | 0.000 | 6212 | 160.122 | 26.533 | 66292 | 145.032 | 22.621 |
PHAFSTMN | 0.210 | 0.607 | 0.953 | 2002 | 29.980 | 17.260 | 17227 | 29.770 | 17.302 |
BPXDI4 | 0.966 | 0.223 | 0.039 | 665 | 67.738 | 19.806 | 7687 | 66.772 | 16.984 |
BPXPLS | -0.084 | 0.625 | 0.286 | 6246 | 74.368 | 13.046 | 66470 | 74.452 | 12.639 |
BPXDI1 | 2.029 | 0.000 | 0.000 | 5749 | 68.184 | 14.977 | 61757 | 66.156 | 14.895 |
BPXDI3 | 1.496 | 0.000 | 0.000 | 5740 | 67.521 | 15.235 | 60517 | 66.024 | 15.184 |
BPXDI2 | 1.964 | 0.000 | 0.000 | 5810 | 68.058 | 14.962 | 61041 | 66.094 | 14.996 |
BPXSY4 | 16.500 | 0.000 | 0.000 | 665 | 135.919 | 23.407 | 7687 | 119.419 | 20.331 |
BPXCHR | -3.384 | 0.519 | 0.817 | 15 | 96.933 | 19.783 | 15152 | 100.317 | 17.076 |
BPXSY3 | 13.999 | 0.000 | 0.000 | 5740 | 131.256 | 20.739 | 60518 | 117.258 | 18.055 |
Age | 31.486 | 0.000 | 0.000 | 6807 | 61.527 | 14.780 | 88740 | 30.041 | 23.635 |
BPXSY2 | 14.419 | 0.000 | 0.000 | 5810 | 132.280 | 21.146 | 61041 | 117.860 | 18.455 |
BPXSY1 | 14.842 | 0.000 | 0.000 | 5749 | 133.321 | 21.342 | 61757 | 118.478 | 18.858 |
BPXDAR | 0.835 | 0.069 | 0.016 | 1356 | 66.953 | 16.481 | 20711 | 66.118 | 14.444 |
BMXHEAD | NaN | NA | NA | 0 | NaN | NA | 0 | NaN | NA |
LBDHDD | -5.268 | 0.000 | 0.000 | 4704 | 48.553 | 14.488 | 45568 | 53.821 | 15.288 |
LBDHDDSI | -0.136 | 0.000 | 0.000 | 4704 | 1.256 | 0.375 | 45568 | 1.392 | 0.395 |
BPXSAR | 16.998 | 0.000 | 0.000 | 1356 | 134.541 | 22.248 | 20711 | 117.542 | 19.343 |
LBXAPB | 7.345 | 0.000 | 0.001 | 228 | 101.175 | 28.270 | 2837 | 93.830 | 28.515 |
LBDAPBSI | 0.073 | 0.000 | 0.001 | 228 | 1.012 | 0.283 | 2837 | 0.938 | 0.285 |
LBDLDLM | -8.538 | 0.000 | 0.000 | 381 | 100.360 | 38.142 | 2167 | 108.898 | 35.153 |
LBDLDMSI | -0.221 | 0.000 | 0.000 | 381 | 2.595 | 0.986 | 2167 | 2.816 | 0.909 |
LBDLDLN | -10.763 | 0.000 | 0.000 | 385 | 99.764 | 38.508 | 2182 | 110.527 | 35.851 |
LBDLDNSI | -0.278 | 0.000 | 0.000 | 385 | 2.580 | 0.996 | 2182 | 2.858 | 0.927 |
BMXSAD3 | 3.322 | 0.000 | 0.000 | 126 | 25.225 | 4.049 | 960 | 21.904 | 5.050 |
BMXSAD4 | 3.312 | 0.000 | 0.000 | 126 | 25.214 | 3.995 | 960 | 21.903 | 5.053 |
LBDLDL | -9.006 | 0.000 | 0.000 | 2180 | 100.390 | 36.569 | 18145 | 109.396 | 35.225 |
LBDLDLSI | -0.233 | 0.000 | 0.000 | 2180 | 2.596 | 0.946 | 18145 | 2.829 | 0.911 |
BMXSAD1 | 5.005 | 0.000 | 0.000 | 1923 | 25.616 | 4.551 | 18661 | 20.610 | 4.732 |
BMXSAD2 | 5.018 | 0.000 | 0.000 | 1923 | 25.612 | 4.570 | 18661 | 20.594 | 4.741 |
BMDAVSAD | 5.005 | 0.000 | 0.000 | 1923 | 25.624 | 4.558 | 18661 | 20.619 | 4.734 |
BMXLEG | -1.397 | 0.000 | 0.000 | 5857 | 37.535 | 4.280 | 65870 | 38.932 | 4.238 |
LBXTC | -1.827 | 0.009 | 0.000 | 4704 | 181.063 | 46.312 | 45567 | 182.890 | 41.105 |
LBDTCSI | -0.047 | 0.009 | 0.000 | 4704 | 4.682 | 1.198 | 45567 | 4.730 | 1.063 |
LBXGLU | 60.692 | 0.000 | 0.000 | 2352 | 160.710 | 68.044 | 18897 | 100.018 | 18.194 |
BMXCALF | 1.379 | 0.000 | 0.000 | 1811 | 38.211 | 4.791 | 27783 | 36.832 | 5.016 |
BMXARML | 4.123 | 0.000 | 0.000 | 6057 | 37.580 | 2.993 | 81107 | 33.457 | 6.720 |
BMXSUB | 7.916 | 0.000 | 0.000 | 2175 | 23.325 | 7.689 | 44885 | 15.409 | 8.668 |
URXUCR2 | -42.900 | 0.000 | 0.000 | 636 | 94.338 | 56.189 | 6600 | 137.238 | 73.324 |
URDUCR2S | -3792.372 | 0.000 | 0.000 | 636 | 8339.484 | 4967.065 | 6600 | 12131.855 | 6481.851 |
BMXTRI | 4.759 | 0.000 | 0.000 | 2843 | 21.026 | 8.490 | 48206 | 16.267 | 8.204 |
BMXARMC | 6.334 | 0.000 | 0.000 | 6054 | 34.672 | 5.408 | 81091 | 28.338 | 7.442 |
Poverty_Income_Ratio | -0.072 | 0.000 | 0.000 | 6059 | 2.225 | 1.502 | 80794 | 2.296 | 1.610 |
BMAEXLEN | 22.610 | 0.000 | 0.000 | 450 | 286.258 | 93.019 | 8321 | 263.647 | 79.125 |
URXUCR | -11.888 | 0.000 | 0.000 | 4840 | 113.749 | 71.374 | 49920 | 125.637 | 81.455 |
BMXTHICR | 1.186 | 0.000 | 0.000 | 1742 | 52.439 | 7.866 | 27456 | 51.253 | 8.012 |
LBDGLUSI | 3.369 | 0.000 | 0.000 | 2352 | 8.921 | 3.777 | 18897 | 5.552 | 1.010 |
LBXTR | 43.659 | 0.000 | 0.000 | 2260 | 157.202 | 159.082 | 18367 | 113.543 | 93.182 |
LBDTRSI | 0.493 | 0.000 | 0.000 | 2260 | 1.775 | 1.796 | 18367 | 1.282 | 1.052 |
BMXRECUM | -0.479 | 0.912 | 0.944 | 5 | 89.640 | 9.141 | 7205 | 90.119 | 8.600 |
URXUMA2 | 39.630 | 0.000 | 0.000 | 636 | 55.181 | 209.726 | 6600 | 15.550 | 77.535 |
URDUMA2S | 39.630 | 0.000 | 0.000 | 636 | 55.181 | 209.726 | 6600 | 15.550 | 77.535 |
BMXHIP | 6.579 | 0.000 | 0.000 | 773 | 110.892 | 15.731 | 5098 | 104.313 | 14.460 |
URXCRS | -1050.899 | 0.000 | 0.000 | 4840 | 10055.402 | 6309.499 | 49920 | 11106.301 | 7200.588 |
BMXHT | 10.458 | 0.000 | 0.000 | 6322 | 165.672 | 10.725 | 80726 | 155.214 | 23.879 |
BMXWAIST | 23.277 | 0.000 | 0.000 | 5913 | 108.049 | 16.341 | 77653 | 84.773 | 21.414 |
PEASCTM1 | 149.680 | 0.000 | 0.000 | 4674 | 711.582 | 200.877 | 67355 | 561.902 | 267.205 |
URDACT2 | 88.039 | 0.000 | 0.000 | 636 | 102.720 | 580.014 | 6600 | 14.680 | 93.315 |
BMXWT | 25.929 | 0.000 | 0.000 | 6306 | 88.116 | 23.925 | 83464 | 62.187 | 29.774 |
URXUMA | 141.019 | 0.000 | 0.000 | 4840 | 172.300 | 793.228 | 49919 | 31.281 | 200.764 |
URXUMS | 141.019 | 0.000 | 0.000 | 4840 | 172.300 | 793.228 | 49919 | 31.281 | 200.764 |
LBXIN | 7.997 | 0.000 | 0.000 | 2284 | 21.110 | 35.946 | 18490 | 13.113 | 12.496 |
LBDINSI | 47.984 | 0.000 | 0.000 | 2284 | 126.662 | 215.673 | 18490 | 78.678 | 74.976 |
BMXBMI | 7.043 | 0.000 | 0.000 | 6268 | 31.948 | 7.566 | 80343 | 24.905 | 7.355 |
URDACT | 141.427 | 0.000 | 0.000 | 3660 | 171.371 | 719.616 | 35584 | 29.944 | 532.255 |
WTSAF2YR | -19537.782 | 0.000 | 0.000 | 2474 | 61002.970 | 68801.008 | 20100 | 80540.753 | 82941.640 |
We can make a corresponding plot to go along with our table:
<- A_DATA_TBL_2.t_ks_result.furrr %>%
plot mutate(Feature_Prevalence_Pct = round(N_Target/(N_Target+N_Control)*100,2)) %>%
ggplot(aes(x=round(ttest.pvalue,4) , y= round(kstest.pvalue,4), color = Feature, size = Feature_Prevalence_Pct)) +
geom_point() +
theme(legend.position='none')
plot#> Warning: Removed 1 rows containing missing values (geom_point).
We can also make our plot interactive with plotly::ggplotly
::ggplotly(plot) plotly
\(~\)
\(~\)
10.2 tableby
The arsenal
package also contains other helpful functions in terms of Exploratory Data Analysis:
library('arsenal')
library('knitr')
%>%
A_DATA_2 head()
#> # A tibble: 6 x 133
#> SEQN DIABETES AGE_AT_DIAG_DM2 Age Gender Race USAF Birth_Country
#> <dbl> <dbl> <dbl> <dbl> <chr> <chr> <chr> <chr>
#> 1 1 0 NA 2 Female Black <NA> USA
#> 2 2 0 NA 77 Male White Yes USA
#> 3 3 0 NA 10 Female White <NA> <NA>
#> 4 4 0 NA 1 Male Black <NA> USA
#> 5 5 0 NA 49 Male White Yes USA
#> 6 6 0 NA 19 Female Other No USA
#> # ... with 125 more variables: Grade_Level <chr>, Grade_Range <chr>,
#> # Marital_Status <chr>, Pregnant <chr>, Household_Icome <chr>,
#> # Family_Income <chr>, Poverty_Income_Ratio <dbl>, yr_range <chr>,
#> # PEASCST1 <dbl>, PEASCTM1 <dbl>, PEASCCT1 <dbl>, BPXCHR <dbl>,
#> # BPQ150A <dbl>, BPQ150B <dbl>, BPQ150C <dbl>, BPQ150D <dbl>, BPAARM <dbl>,
#> # BPACSZ <dbl>, BPXPLS <dbl>, BPXDB <dbl>, BPXPULS <dbl>, BPXPTY <dbl>,
#> # BPXML1 <dbl>, BPXSY1 <dbl>, BPXDI1 <dbl>, BPAEN1 <dbl>, BPXSY2 <dbl>,
#> # BPXDI2 <dbl>, BPAEN2 <dbl>, BPXSY3 <dbl>, BPXDI3 <dbl>, BPAEN3 <dbl>,
#> # BPXSY4 <dbl>, BPXDI4 <dbl>, BPAEN4 <dbl>, BPXSAR <dbl>, BPXDAR <dbl>,
#> # BMAEXLEN <dbl>, BMAEXSTS <dbl>, BMAEXCMT <dbl>, BMXWT <dbl>, BMIWT <dbl>,
#> # BMXRECUM <dbl>, BMIRECUM <dbl>, BMXHEAD <dbl>, BMIHEAD <dbl>, BMXHT <dbl>,
#> # BMIHT <dbl>, BMXBMI <dbl>, BMXLEG <dbl>, BMILEG <dbl>, BMXCALF <dbl>,
#> # BMICALF <dbl>, BMXARML <dbl>, BMIARML <dbl>, BMXARMC <dbl>, BMIARMC <dbl>,
#> # BMXWAIST <dbl>, BMIWAIST <dbl>, BMXTHICR <dbl>, BMITHICR <dbl>,
#> # BMXTRI <dbl>, BMITRI <dbl>, BMXSUB <dbl>, BMISUB <dbl>, BMAAMP <dbl>,
#> # BMAUREXT <dbl>, BMAUPREL <dbl>, BMAULEXT <dbl>, BMAUPLEL <dbl>,
#> # BMALOREX <dbl>, BMALORKN <dbl>, BMALLEXT <dbl>, BMALLKNE <dbl>,
#> # BMDSTATS <dbl>, BMDRECUF <dbl>, BMDSUBF <dbl>, BMDTHICF <dbl>,
#> # BMDLEGF <dbl>, BMDARMLF <dbl>, BMDCALFF <dbl>, BMDBMIC <dbl>,
#> # BMXSAD1 <dbl>, BMXSAD2 <dbl>, BMXSAD3 <dbl>, BMXSAD4 <dbl>, BMDAVSAD <dbl>,
#> # BMDSADCM <dbl>, BMXHIP <dbl>, BMIHIP <dbl>, URXUMA <dbl>, URXUMS <dbl>,
#> # URXUCR <dbl>, URXCRS <dbl>, URDACT <dbl>, URXUMA2 <dbl>, URDUMA2S <dbl>,
#> # URXUCR2 <dbl>, URDUCR2S <dbl>, URDACT2 <dbl>, ...
We can perform many of the analyses we did in the last part easily with the tableby
function
tableby(DIABETES_char ~ Age + Gender + Race + Marital_Status + Grade_Level + LBXGLU,
data = A_DATA_2 %>%
mutate(DIABETES_char = case_when(DIABETES == 1 ~ "Diabetics",
== 0 ~ "Non-Diabetics",
DIABETES is.na(DIABETES) ~ "Unknown Diabetic Status"))) %>%
summary(pfootnote=TRUE)
Diabetics (N=6807) | Non-Diabetics (N=88740) | Unknown Diabetic Status (N=5769) | Total (N=101316) | p value | |
---|---|---|---|---|---|
Age | < 0.0011 | ||||
Mean (SD) | 61.527 (14.780) | 30.041 (23.635) | 11.989 (24.525) | 31.128 (24.943) | |
Range | 1.000 - 85.000 | 1.000 - 85.000 | 0.000 - 85.000 | 0.000 - 85.000 | |
Gender | 0.0192 | ||||
Female | 3371 (49.5%) | 45188 (50.9%) | 2864 (49.6%) | 51423 (50.8%) | |
Male | 3436 (50.5%) | 43552 (49.1%) | 2905 (50.4%) | 49893 (49.2%) | |
Race | < 0.0012 | ||||
Black | 1823 (26.8%) | 20692 (23.3%) | 1129 (19.6%) | 23644 (23.3%) | |
Mexican American | 1373 (20.2%) | 19426 (21.9%) | 1650 (28.6%) | 22449 (22.2%) | |
Other | 611 (9.0%) | 8376 (9.4%) | 510 (8.8%) | 9497 (9.4%) | |
Other Hispanic | 592 (8.7%) | 7201 (8.1%) | 501 (8.7%) | 8294 (8.2%) | |
White | 2408 (35.4%) | 33045 (37.2%) | 1979 (34.3%) | 37432 (36.9%) | |
Marital_Status | < 0.0012 | ||||
N-Miss | 157 | 35025 | 4620 | 39802 | |
Divorced | 838 (12.6%) | 4599 (8.6%) | 162 (14.1%) | 5599 (9.1%) | |
Living with partner | 224 (3.4%) | 3892 (7.2%) | 70 (6.1%) | 4186 (6.8%) | |
Married | 3634 (54.6%) | 24349 (45.3%) | 595 (51.8%) | 28578 (46.5%) | |
Never married | 604 (9.1%) | 15531 (28.9%) | 137 (11.9%) | 16272 (26.5%) | |
Separated | 253 (3.8%) | 1541 (2.9%) | 39 (3.4%) | 1833 (3.0%) | |
Widowed | 1097 (16.5%) | 3803 (7.1%) | 146 (12.7%) | 5046 (8.2%) | |
Grade_Level | 0.0402 | ||||
N-Miss | 6681 | 59497 | 5663 | 71841 | |
10th grade | 11 (8.7%) | 2177 (7.4%) | 9 (8.5%) | 2197 (7.5%) | |
11th grade | 12 (9.5%) | 2146 (7.3%) | 8 (7.5%) | 2166 (7.3%) | |
12th grade, no diploma | 0 (0.0%) | 438 (1.5%) | 2 (1.9%) | 440 (1.5%) | |
1st grade | 6 (4.8%) | 2126 (7.3%) | 2 (1.9%) | 2134 (7.2%) | |
2nd grade | 4 (3.2%) | 2102 (7.2%) | 1 (0.9%) | 2107 (7.1%) | |
3rd grade | 6 (4.8%) | 2031 (6.9%) | 6 (5.7%) | 2043 (6.9%) | |
4th grade | 6 (4.8%) | 2036 (7.0%) | 12 (11.3%) | 2054 (7.0%) | |
5th grade | 9 (7.1%) | 2110 (7.2%) | 10 (9.4%) | 2129 (7.2%) | |
6th grade | 14 (11.1%) | 2219 (7.6%) | 5 (4.7%) | 2238 (7.6%) | |
7th grade | 8 (6.3%) | 2178 (7.4%) | 11 (10.4%) | 2197 (7.5%) | |
8th grade | 11 (8.7%) | 2292 (7.8%) | 12 (11.3%) | 2315 (7.9%) | |
9th grade | 18 (14.3%) | 2195 (7.5%) | 15 (14.2%) | 2228 (7.6%) | |
Don’t Know | 0 (0.0%) | 9 (0.0%) | 0 (0.0%) | 9 (0.0%) | |
GED or equivalent | 0 (0.0%) | 115 (0.4%) | 0 (0.0%) | 115 (0.4%) | |
High school graduate | 9 (7.1%) | 1422 (4.9%) | 7 (6.6%) | 1438 (4.9%) | |
Less than 5th grade | 0 (0.0%) | 26 (0.1%) | 0 (0.0%) | 26 (0.1%) | |
Less than 9th grade | 1 (0.8%) | 277 (0.9%) | 1 (0.9%) | 279 (0.9%) | |
More than high school | 6 (4.8%) | 980 (3.4%) | 3 (2.8%) | 989 (3.4%) | |
Never attended / kindergarten only | 5 (4.0%) | 2362 (8.1%) | 2 (1.9%) | 2369 (8.0%) | |
Refused | 0 (0.0%) | 2 (0.0%) | 0 (0.0%) | 2 (0.0%) | |
LBXGLU | < 0.0011 | ||||
N-Miss | 4455 | 69843 | 5326 | 79624 | |
Mean (SD) | 160.710 (68.044) | 100.018 (18.194) | 118.363 (36.091) | 106.974 (34.273) | |
Range | 21.000 - 584.000 | 38.000 - 422.000 | 77.000 - 451.000 | 21.000 - 584.000 |
- Linear Model ANOVA
- Pearson’s Chi-squared test
\(~\)
\(~\)
10.3 Assessing Cohort Balance
Let’s assume there was a cohort assigned to the patient, we can take our algorithm from Section 7.2
set.seed(85763099)
$rand_class <- sample(c('Rand_A','Rand_B'),
A_DATA_2size = nrow(A_DATA_2),
replace = TRUE)
$rand_sort <- runif(nrow(A_DATA_2))
A_DATA_2
<- A_DATA_2 %>%
A_DATA_2 arrange(rand_sort) %>%
mutate(rn = row_number()) %>%
mutate(rn_mod_5 = rn %% 5 ) %>%
mutate(rand_class = if_else( rn_mod_5 == 0,
"Rand_C",
%>%
rand_class)) select(-rn, -rn_mod_5, -rand_sort) %>%
mutate(rand_class = as.factor(rand_class))
We can check for balance in the cohorts among some of the features perhaps, Age
, Race
, and Gender
with:
tableby(rand_class ~ Age + Gender + Race,
data = A_DATA_2) %>%
summary(pfootnote=TRUE)
Rand_A (N=40552) | Rand_B (N=40501) | Rand_C (N=20263) | Total (N=101316) | p value | |
---|---|---|---|---|---|
Age | 0.0171 | ||||
Mean (SD) | 31.059 (24.930) | 30.977 (24.899) | 31.570 (25.054) | 31.128 (24.943) | |
Range | 0.000 - 85.000 | 0.000 - 85.000 | 0.000 - 85.000 | 0.000 - 85.000 | |
Gender | 0.2092 | ||||
Female | 20557 (50.7%) | 20472 (50.5%) | 10394 (51.3%) | 51423 (50.8%) | |
Male | 19995 (49.3%) | 20029 (49.5%) | 9869 (48.7%) | 49893 (49.2%) | |
Race | 0.1222 | ||||
Black | 9357 (23.1%) | 9654 (23.8%) | 4633 (22.9%) | 23644 (23.3%) | |
Mexican American | 9047 (22.3%) | 8935 (22.1%) | 4467 (22.0%) | 22449 (22.2%) | |
Other | 3856 (9.5%) | 3761 (9.3%) | 1880 (9.3%) | 9497 (9.4%) | |
Other Hispanic | 3333 (8.2%) | 3292 (8.1%) | 1669 (8.2%) | 8294 (8.2%) | |
White | 14959 (36.9%) | 14859 (36.7%) | 7614 (37.6%) | 37432 (36.9%) |
- Linear Model ANOVA
- Pearson’s Chi-squared test
Above we see that both p-values of Race
, and Gender
are above .05 meaning the distributions of Race
, and Gender
appear to be random among the cohorts of rand_class
; so here, the cohorts rand_class
are well-balanced on Race
, and Gender
.
We see that the p-value of Age
appears to be significant, however, the distributions appear to be similar:
%>%
A_DATA_2 ggplot(aes(x=Age, color=rand_class)) +
geom_density()
\(~\)
\(~\)
10.4 Missing Data
<- A_DATA_2 %>%
A_DATA_2.Num select(SEQN, DIABETES, Gender, Race, Family_Income, all_of(FEATURE_TYPE$numeric_features))
The first function is the Amelia::missmap
function which can be used as follows.
<- Sys.time()
tic
::missmap(as.data.frame(A_DATA_2.Num))
Amelia
<- Sys.time()
toc
<- difftime(toc , tic , units = "secs") time.Amelia
Next we will review some of the functionality within the mice
package:
library(mice)
#>
#> Attaching package: 'mice'
#> The following object is masked from 'package:stats':
#>
#> filter
#> The following objects are masked from 'package:base':
#>
#> cbind, rbind
library(VIM)
#> Loading required package: colorspace
#> Loading required package: grid
#> VIM is ready to use.
#> Suggestions and bug-reports can be submitted at: https://github.com/statistikat/VIM/issues
#>
#> Attaching package: 'VIM'
#> The following object is masked from 'package:datasets':
#>
#> sleep
library(lattice)
<- Sys.time()
tic
#plot the missing values
<- aggr(A_DATA_2.Num,
plot.miss numbers=TRUE,
sortVars=TRUE,
labels=colnames(A_DATA_2.Num),
cex.axis=.7,
gap=3,
ylab=c("Proportion of missingness","Missingness Pattern"))
#> Warning in plot.aggr(res, ...): not enough vertical space to display frequencies
#> (too many combinations)
#>
#> Variables sorted by number of missings:
#> Variable Count
#> BMXSAD3 0.98905405
#> BMXSAD4 0.98905405
#> BMXHEAD 0.97536421
#> LBDLDLM 0.97403174
#> LBDLDMSI 0.97403174
#> LBDLDLN 0.97384421
#> LBDLDNSI 0.97384421
#> LBXAPB 0.96934344
#> LBDAPBSI 0.96934344
#> BMXHIP 0.94039441
#> URXUCR2 0.92734612
#> URDUCR2S 0.92734612
#> URXUMA2 0.92734612
#> URDUMA2S 0.92734612
#> URDACT2 0.92734612
#> BPXDI4 0.91643965
#> BPXSY4 0.91643965
#> BMAEXLEN 0.90838564
#> BMXRECUM 0.88619764
#> BPXCHR 0.80783884
#> PHAFSTHR 0.80652612
#> PHAFSTMN 0.80652612
#> LBDLDL 0.79523471
#> LBDLDLSI 0.79523471
#> BMXSAD1 0.79276718
#> BMXSAD2 0.79276718
#> BMDAVSAD 0.79276718
#> LBXTR 0.79212563
#> LBDTRSI 0.79212563
#> LBXIN 0.79067472
#> LBDINSI 0.79067472
#> LBXGLU 0.78589759
#> LBDGLUSI 0.78589759
#> BPXDAR 0.78019266
#> BPXSAR 0.78019266
#> WTSAF2YR 0.77256307
#> BMXTHICR 0.70892060
#> BMXCALF 0.70493308
#> URDACT 0.60521537
#> BMXSUB 0.50978128
#> LBXTC 0.49466027
#> LBDTCSI 0.49466027
#> LBDHDD 0.49465040
#> LBDHDDSI 0.49465040
#> BMXTRI 0.46913617
#> URXUMA 0.45004738
#> URXUMS 0.45004738
#> URXUCR 0.45003751
#> URXCRS 0.45003751
#> Family_Income 0.44252635
#> BPXDI3 0.33547515
#> BPXSY3 0.33546528
#> BPXDI2 0.32948399
#> BPXSY2 0.32948399
#> BPXDI1 0.32314738
#> BPXSY1 0.32314738
#> BMXLEG 0.28113032
#> BPXML1 0.27300722
#> BPXPLS 0.27083580
#> PEASCTM1 0.24495637
#> BMXWAIST 0.16401161
#> BMXBMI 0.13341427
#> BMXHT 0.12907142
#> BMXARMC 0.09402266
#> BMXARML 0.09381539
#> Poverty_Income_Ratio 0.09076553
#> BMXWT 0.06054325
#> DIABETES 0.05694066
#> SEQN 0.00000000
#> Gender 0.00000000
#> Race 0.00000000
#> Age 0.00000000
<- Sys.time()
toc
<- difftime(toc , tic , units = "secs") time.mice
#Drawing margin plot
marginplot(A_DATA_2.Num[, c("Age", "BMXARML")],
cex.numbers = 1.2,
pch = 19)
#Drawing margin plot
marginplot(A_DATA_2.Num[, c("Age", "BMXSAD3")],
cex.numbers = 1.2,
pch = 19)
Here’s a function to give to return the a tibble of features with percentage of non-missing values:
<- function(data, Percent_Complete = 0){
Features_Percent_Complete
<- function(col){sum(is.na(col))}
SumNa
<- data %>%
na_sums summarise_all(SumNa) %>%
::pivot_longer(everything() ,names_to = 'feature', values_to = 'SumNa') %>%
tidyrarrange(-SumNa) %>%
mutate(PctNa = SumNa/nrow(data)) %>%
mutate(PctComp = (1 - PctNa)*100)
<- na_sums %>%
data_out filter(PctComp >= Percent_Complete)
return(data_out)
}
Let’s first define the features that have at least 70% data:
<- Features_Percent_Complete(A_DATA_2.Num, 0)
features_all_percent_compete
features_all_percent_compete#> # A tibble: 72 x 4
#> feature SumNa PctNa PctComp
#> <chr> <int> <dbl> <dbl>
#> 1 BMXSAD3 100207 0.989 1.09
#> 2 BMXSAD4 100207 0.989 1.09
#> 3 BMXHEAD 98820 0.975 2.46
#> 4 LBDLDLM 98685 0.974 2.60
#> 5 LBDLDMSI 98685 0.974 2.60
#> 6 LBDLDLN 98666 0.974 2.62
#> # ... with 66 more rows
Then we can graph this as:
%>%
features_all_percent_compete ggplot(aes(x=reorder(feature, PctComp), y =PctComp, fill=feature)) +
geom_bar(stat = "identity") +
coord_flip() +
theme(legend.position = "none")
For the remainder of the majority of this discussion we’ll limit ourselves to features that have at least 65% of data:
<- Features_Percent_Complete(A_DATA_2.Num, 65) %>%
features_65_num filter(feature %in% c(FEATURE_TYPE$numeric_features) )
features_65_num#> # A tibble: 18 x 4
#> feature SumNa PctNa PctComp
#> <chr> <int> <dbl> <dbl>
#> 1 BPXDI3 33989 0.335 66.5
#> 2 BPXSY3 33988 0.335 66.5
#> 3 BPXDI2 33382 0.329 67.1
#> 4 BPXSY2 33382 0.329 67.1
#> 5 BPXDI1 32740 0.323 67.7
#> 6 BPXSY1 32740 0.323 67.7
#> # ... with 12 more rows
Note again we can make a function for this graph above:
<- function(data, Percent_Complete = 0 ){
Feature_Percent_Complete_Graph <- Features_Percent_Complete(data, Percent_Complete)
table
<- table %>%
plot1 ggplot(aes(x=reorder(feature, PctComp), y =PctComp, fill=feature)) +
geom_bar(stat = "identity") +
coord_flip() +
theme(legend.position = "none")
return(plot1)
}
Let’s time it:
<- Sys.time()
tic
Feature_Percent_Complete_Graph(A_DATA_2.Num, 0)
<- Sys.time()
toc
<- difftime(toc , tic , units = 'secs') FPC.time
10.4.0.1 Speed-Ups
Amelia
is an older package, we can see that our function is
as.numeric(time.Amelia) / as.numeric(FPC.time)
#> [1] 179.2837
times faster than Amelia::missmap
It also outperforms the mice results by:
as.numeric(time.mice) / as.numeric(FPC.time)
#> [1] 159.0339
10.4.1 Missing Value Imputation
Note in the below summarise_at
we are passing in a number of functions including a function to count the number of missing values n_miss
, n
, min
, max
, mean
, median
, and sd
, these summary statistics are computed _at
each of the vars
we pass in:
<- A_DATA_2.Num %>%
summary_table filter(!is.na(DIABETES)) %>%
group_by(Gender, Race, Family_Income) %>%
summarise_at(vars(all_of(features_65_num$feature)),
list(
n = ~n(),
n_miss = ~sum(is.na(.x)),
min = ~min(.x , na.rm = TRUE),
max = ~max(.x , na.rm = TRUE),
mean = ~mean(.x , na.rm = TRUE),
median = ~median(.x , na.rm = TRUE),
sd = ~sd(.x , na.rm = TRUE)),
.groups='keep'
) #> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in min(.x, na.rm = TRUE): no non-missing arguments to min; returning Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
#> Warning in max(.x, na.rm = TRUE): no non-missing arguments to max; returning
#> -Inf
%>%
summary_table glimpse()
#> Rows: 150
#> Columns: 129
#> Groups: Gender, Race [10]
#> $ Gender <chr> "Female", "Female", "Female", "Female", "F~
#> $ Race <chr> "Black", "Black", "Black", "Black", "Black~
#> $ Family_Income <chr> "$ 0 to $ 4,999", "$ 5,000 to $ 9,999", "$~
#> $ BPXDI3_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BPXSY3_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BPXDI2_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BPXSY2_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BPXDI1_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BPXSY1_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BMXLEG_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BPXML1_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BPXPLS_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ PEASCTM1_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BMXWAIST_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BMXBMI_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BMXHT_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BMXARMC_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BMXARML_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ Poverty_Income_Ratio_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BMXWT_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ Age_n <int> 364, 459, 522, 541, 456, 171, 544, 827, 57~
#> $ BPXDI3_n_miss <int> 110, 142, 155, 117, 136, 36, 134, 206, 138~
#> $ BPXSY3_n_miss <int> 110, 142, 155, 117, 136, 36, 134, 206, 138~
#> $ BPXDI2_n_miss <int> 114, 145, 160, 112, 129, 34, 126, 208, 138~
#> $ BPXSY2_n_miss <int> 114, 145, 160, 112, 129, 34, 126, 208, 138~
#> $ BPXDI1_n_miss <int> 113, 148, 163, 129, 139, 38, 138, 219, 145~
#> $ BPXSY1_n_miss <int> 113, 148, 163, 129, 139, 38, 138, 219, 145~
#> $ BMXLEG_n_miss <int> 116, 139, 165, 111, 134, 35, 126, 199, 129~
#> $ BPXML1_n_miss <int> 101, 130, 143, 104, 119, 31, 113, 184, 126~
#> $ BPXPLS_n_miss <int> 101, 131, 142, 104, 119, 31, 113, 183, 126~
#> $ PEASCTM1_n_miss <int> 131, 145, 170, 229, 155, 48, 187, 294, 229~
#> $ BMXWAIST_n_miss <int> 59, 66, 79, 66, 55, 25, 73, 91, 55, 57, 26~
#> $ BMXBMI_n_miss <int> 37, 36, 45, 42, 32, 15, 39, 59, 36, 32, 11~
#> $ BMXHT_n_miss <int> 36, 36, 44, 42, 32, 14, 39, 59, 34, 32, 11~
#> $ BMXARMC_n_miss <int> 41, 40, 58, 44, 41, 20, 50, 65, 39, 42, 20~
#> $ BMXARML_n_miss <int> 43, 42, 57, 45, 40, 22, 52, 66, 39, 42, 21~
#> $ Poverty_Income_Ratio_n_miss <int> 0, 0, 0, 0, 0, 171, 0, 0, 0, 0, 0, 0, 0, 1~
#> $ BMXWT_n_miss <int> 24, 17, 30, 27, 22, 9, 23, 36, 21, 19, 6, ~
#> $ Age_n_miss <int> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ~
#> $ BPXDI3_min <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 26,~
#> $ BPXSY3_min <dbl> 84, 82, 74, 82, 86, 80, 82, 80, 78, 82, 86~
#> $ BPXDI2_min <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 36,~
#> $ BPXSY2_min <dbl> 86, 86, 72, 80, 86, 84, 84, 84, 76, 82, 86~
#> $ BPXDI1_min <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 42,~
#> $ BPXSY1_min <dbl> 88, 80, 74, 82, 84, 84, 86, 84, 78, 84, 86~
#> $ BMXLEG_min <dbl> 27.6, 27.7, 24.9, 27.1, 27.2, 29.8, 28.0, ~
#> $ BPXML1_min <dbl> 110, 0, 110, 100, 110, 120, 110, 110, 110,~
#> $ BPXPLS_min <dbl> 50, 46, 46, 44, 46, 50, 46, 46, 50, 48, 36~
#> $ PEASCTM1_min <dbl> 6, 9, 6, 37, 7, 46, 8, 3, 7, 6, 5, 7, 6, 1~
#> $ BMXWAIST_min <dbl> 38.7, 43.3, 40.5, 46.2, 42.7, 43.9, 44.2, ~
#> $ BMXBMI_min <dbl> 13.40, 12.50, 13.41, 13.40, 12.70, 13.30, ~
#> $ BMXHT_min <dbl> 78.5, 81.6, 82.8, 86.0, 82.5, 92.3, 86.9, ~
#> $ BMXARMC_min <dbl> 13.8, 13.8, 13.9, 14.6, 13.7, 14.0, 13.1, ~
#> $ BMXARML_min <dbl> 13.9, 15.0, 14.4, 16.0, 14.0, 15.6, 16.0, ~
#> $ Poverty_Income_Ratio_min <dbl> 0.00, 0.12, 0.27, 2.25, 0.30, Inf, 0.48, 0~
#> $ BMXWT_min <dbl> 7.7, 8.9, 8.5, 10.0, 8.9, 10.0, 8.9, 8.2, ~
#> $ Age_min <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ~
#> $ BPXDI3_max <dbl> 116, 126, 112, 110, 108, 102, 112, 118, 11~
#> $ BPXSY3_max <dbl> 224, 212, 218, 210, 196, 222, 212, 232, 20~
#> $ BPXDI2_max <dbl> 126, 124, 110, 114, 110, 104, 108, 122, 11~
#> $ BPXSY2_max <dbl> 190, 228, 212, 208, 194, 216, 210, 234, 20~
#> $ BPXDI1_max <dbl> 124, 124, 106, 114, 104, 112, 116, 116, 11~
#> $ BPXSY1_max <dbl> 208, 230, 220, 208, 198, 216, 222, 238, 20~
#> $ BMXLEG_max <dbl> 47.2, 46.8, 48.2, 48.5, 50.0, 45.0, 46.7, ~
#> $ BPXML1_max <dbl> 240, 250, 888, 220, 220, 250, 888, 888, 24~
#> $ BPXPLS_max <dbl> 120, 116, 130, 120, 112, 110, 140, 118, 12~
#> $ PEASCTM1_max <dbl> 1131, 1536, 1243, 1439, 1274, 1086, 1142, ~
#> $ BMXWAIST_max <dbl> 165.5, 171.6, 156.8, 163.5, 158.8, 151.7, ~
#> $ BMXBMI_max <dbl> 57.80, 82.10, 77.50, 68.70, 84.40, 64.70, ~
#> $ BMXHT_max <dbl> 184.8, 186.4, 180.9, 187.8, 184.1, 177.4, ~
#> $ BMXARMC_max <dbl> 54.0, 57.3, 51.7, 58.1, 48.5, 51.5, 58.3, ~
#> $ BMXARML_max <dbl> 42.0, 43.9, 43.2, 43.0, 43.9, 41.9, 43.0, ~
#> $ Poverty_Income_Ratio_max <dbl> 0.43, 0.95, 1.35, 5.00, 1.85, -Inf, 2.31, ~
#> $ BMXWT_max <dbl> 157.5, 187.7, 191.6, 193.7, 219.6, 173.4, ~
#> $ Age_max <dbl> 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80~
#> $ BPXDI3_mean <dbl> 65.09449, 67.35016, 64.74659, 65.93396, 66~
#> $ BPXSY3_mean <dbl> 117.7087, 123.9558, 122.2616, 116.7594, 12~
#> $ BPXDI2_mean <dbl> 65.25600, 67.51592, 65.16575, 66.54079, 66~
#> $ BPXSY2_mean <dbl> 117.6400, 125.1401, 123.3702, 117.6364, 12~
#> $ BPXDI1_mean <dbl> 66.28685, 68.47588, 65.14206, 66.51942, 66~
#> $ BPXSY1_mean <dbl> 117.8725, 125.1447, 122.8969, 117.5485, 12~
#> $ BMXLEG_mean <dbl> 38.63629, 38.14375, 37.86022, 38.96349, 37~
#> $ BPXML1_mean <dbl> 143.3840, 149.3617, 155.3879, 143.5515, 14~
#> $ BPXPLS_mean <dbl> 77.87072, 76.92073, 75.43684, 74.52174, 75~
#> $ PEASCTM1_mean <dbl> 543.7597, 563.0000, 554.6705, 637.6538, 55~
#> $ BMXWAIST_mean <dbl> 83.58656, 89.62290, 88.33115, 89.26379, 84~
#> $ BMXBMI_mean <dbl> 26.12003, 27.81638, 27.77199, 27.98603, 26~
#> $ BMXHT_mean <dbl> 148.9064, 150.9000, 150.5358, 156.7822, 15~
#> $ BMXARMC_mean <dbl> 28.14458, 29.31217, 29.28405, 30.31288, 28~
#> $ BMXARML_mean <dbl> 32.38505, 32.86547, 33.19505, 34.53145, 32~
#> $ Poverty_Income_Ratio_mean <dbl> 0.10730769, 0.46331155, 0.70402299, 4.6876~
#> $ BMXWT_mean <dbl> 60.84735, 65.91312, 66.12337, 70.02490, 63~
#> $ Age_mean <dbl> 24.66484, 33.91285, 35.53831, 33.82994, 31~
#> $ BPXDI3_median <dbl> 66, 68, 66, 68, 68, 70, 66, 68, 66, 68, 68~
#> $ BPXSY3_median <dbl> 114, 118, 116, 112, 116, 122, 114, 116, 11~
#> $ BPXDI2_median <dbl> 66, 66, 66, 68, 68, 68, 66, 66, 66, 66, 66~
#> $ BPXSY2_median <dbl> 114, 120, 116, 114, 116, 122, 114, 116, 11~
#> $ BPXDI1_median <dbl> 66, 68, 66, 68, 68, 68, 66, 66, 66, 68, 68~
#> $ BPXSY1_median <dbl> 114, 120, 118, 114, 116, 122, 114, 116, 11~
#> $ BMXLEG_median <dbl> 38.95, 38.20, 38.00, 39.05, 38.00, 38.30, ~
#> $ BPXML1_median <dbl> 140, 140, 140, 140, 140, 140, 140, 140, 14~
#> $ BPXPLS_median <dbl> 78, 76, 74, 74, 74, 74, 76, 76, 74, 74, 74~
#> $ PEASCTM1_median <dbl> 567.0, 576.5, 603.5, 657.5, 590.0, 667.0, ~
#> $ BMXWAIST_median <dbl> 80.80, 90.20, 91.60, 89.40, 86.70, 99.60, ~
#> $ BMXBMI_median <dbl> 23.700, 26.660, 27.230, 26.900, 25.500, 30~
#> $ BMXHT_median <dbl> 158.45, 159.00, 158.35, 161.40, 158.50, 16~
#> $ BMXARMC_median <dbl> 28.00, 29.80, 30.10, 30.70, 29.30, 32.50, ~
#> $ BMXARML_median <dbl> 34.60, 35.40, 35.70, 36.00, 35.15, 36.00, ~
#> $ Poverty_Income_Ratio_median <dbl> 0.085, 0.410, 0.680, 5.000, 0.860, NA, 1.0~
#> $ BMXWT_median <dbl> 59.65, 67.10, 70.05, 70.55, 64.95, 76.75, ~
#> $ Age_median <dbl> 19.0, 28.0, 31.0, 35.0, 24.0, 42.0, 26.0, ~
#> $ BPXDI3_sd <dbl> 16.55506, 17.14552, 16.63621, 15.14111, 16~
#> $ BPXSY3_sd <dbl> 19.76127, 23.39178, 23.76564, 18.70560, 20~
#> $ BPXDI2_sd <dbl> 15.90050, 16.45426, 16.46419, 14.67869, 16~
#> $ BPXSY2_sd <dbl> 19.00957, 23.64783, 23.73587, 18.99184, 21~
#> $ BPXDI1_sd <dbl> 14.07457, 15.88685, 15.49407, 13.23757, 15~
#> $ BPXSY1_sd <dbl> 19.40844, 24.38247, 23.34555, 18.58550, 21~
#> $ BMXLEG_sd <dbl> 3.544325, 3.598819, 3.773591, 3.155392, 3.~
#> $ BPXML1_sd <dbl> 20.31134, 24.59216, 69.76214, 18.14822, 21~
#> $ BPXPLS_sd <dbl> 12.51924, 12.55665, 12.28718, 11.47804, 12~
#> $ PEASCTM1_sd <dbl> 248.5154, 272.9288, 271.9278, 245.9812, 25~
#> $ BMXWAIST_sd <dbl> 25.32800, 26.69575, 25.81373, 21.50595, 24~
#> $ BMXBMI_sd <dbl> 9.509575, 10.418529, 9.889805, 8.842373, 9~
#> $ BMXHT_sd <dbl> 23.88131, 22.45114, 21.96616, 16.70671, 22~
#> $ BMXARMC_sd <dbl> 8.507530, 9.030110, 8.539857, 7.509531, 8.~
#> $ BMXARML_sd <dbl> 6.895394, 6.810559, 6.819470, 5.132052, 6.~
#> $ Poverty_Income_Ratio_sd <dbl> 0.09773131, 0.20340318, 0.26553590, 0.5764~
#> $ BMXWT_sd <dbl> 33.33993, 35.45615, 33.77805, 29.73478, 33~
#> $ Age_sd <dbl> 20.24840, 25.68241, 26.35764, 22.24478, 25~
We can actually restructure this table if we use some dplyr
:
%>%
summary_table pivot_longer(cols = contains(features_65_num$feature))
#> # A tibble: 18,900 x 5
#> # Groups: Gender, Race [10]
#> Gender Race Family_Income name value
#> <chr> <chr> <chr> <chr> <dbl>
#> 1 Female Black $ 0 to $ 4,999 BPXDI3_n 364
#> 2 Female Black $ 0 to $ 4,999 BPXDI3_n_miss 110
#> 3 Female Black $ 0 to $ 4,999 BPXDI3_min 0
#> 4 Female Black $ 0 to $ 4,999 BPXDI3_max 116
#> 5 Female Black $ 0 to $ 4,999 BPXDI3_mean 65.1
#> 6 Female Black $ 0 to $ 4,999 BPXDI3_median 66
#> # ... with 18,894 more rows
We can also just focus on the counts of missing values:
%>%
summary_table pivot_longer(cols = contains(features_65_num$feature)) %>%
filter(str_detect(name, "n_miss")) %>%
arrange(-value)
#> # A tibble: 2,700 x 5
#> # Groups: Gender, Race [10]
#> Gender Race Family_Income name value
#> <chr> <chr> <chr> <chr> <dbl>
#> 1 Female White <NA> BPXDI3_n_miss 2701
#> 2 Female White <NA> BPXSY3_n_miss 2700
#> 3 Female White <NA> BPXDI2_n_miss 2619
#> 4 Female White <NA> BPXSY2_n_miss 2619
#> 5 Male White <NA> BPXDI3_n_miss 2516
#> 6 Male White <NA> BPXSY3_n_miss 2516
#> # ... with 2,694 more rows
We can impute missing values with the mean for the column, perhaps by Gender
, Race
, Family_Income
<- A_DATA_2.Num %>%
A_DATA_2.Num.impute filter(!is.na(DIABETES)) %>%
mutate_at(vars(Gender, Race), ~if_else(is.na(.x), "Missing", .x)) %>%
group_by(Gender, Race) %>%
mutate_at(vars(features_65_num$feature), ~if_else(is.na(.x), mean(.x, na.rm = TRUE), .x)) %>%
ungroup() %>%
select(SEQN, DIABETES, Gender, Race, Family_Income, all_of(features_65_num$feature))
We can recompute our summary table - and if we were so inclined see if any of these values changed significantly:
%>%
A_DATA_2.Num.impute group_by(Gender, Race, Family_Income) %>%
summarise_at(vars(all_of(features_65_num$feature)),
list(
n = ~n(),
n_miss = ~sum(is.na(.x)),
min = ~min(.x , na.rm = TRUE),
max = ~max(.x , na.rm = TRUE),
mean = ~mean(.x , na.rm = TRUE),
median = ~median(.x , na.rm = TRUE),
sd = ~sd(.x , na.rm = TRUE)),
.groups='keep'
%>%
) ungroup() %>%
pivot_longer(contains(features_65_num$feature)) %>%
filter(str_detect(name,"n_miss")) %>%
arrange(-value)
#> # A tibble: 2,700 x 5
#> Gender Race Family_Income name value
#> <chr> <chr> <chr> <chr> <dbl>
#> 1 Female Black $ 0 to $ 4,999 BPXDI3_n_miss 0
#> 2 Female Black $ 0 to $ 4,999 BPXSY3_n_miss 0
#> 3 Female Black $ 0 to $ 4,999 BPXDI2_n_miss 0
#> 4 Female Black $ 0 to $ 4,999 BPXSY2_n_miss 0
#> 5 Female Black $ 0 to $ 4,999 BPXDI1_n_miss 0
#> 6 Female Black $ 0 to $ 4,999 BPXSY1_n_miss 0
#> # ... with 2,694 more rows
But for now let’s just look at the number of missing values:
Feature_Percent_Complete_Graph(A_DATA_2.Num.impute,0)
\(~\)
\(~\)
10.6 Principal Component Analysis
Principal Component Analysis describes an orthogonal (preserves inner product) linear transformation of the data; where the data are mapped into a new coordinate system for which the first dimension (the first principal component) contains the greatest variance of the data; the second dimension contains the second greatest variance; and so on.
We will showcase how Principal Component Analysis (PCA) can yield the Principal Components (PCs) can be utilized as effectively as features in a predictive model.
First will split the data:
set.seed(4321)
<- A_DATA_2.Num.impute %>%
A_DATA_2.Num.impute mutate(DIABETES_factor = as.factor(DIABETES))
<- sample(A_DATA_2.Num.impute$SEQN,
PCA_train.sample nrow(A_DATA_2.Num.impute)*.65,
replace = FALSE)
<- A_DATA_2.Num.impute %>%
PCA.train filter(SEQN %in% PCA_train.sample)
<- A_DATA_2.Num.impute %>%
PCA.test filter(!(SEQN %in% PCA_train.sample))
10.6.1 Fit PCA Model
Below, we set center
and scale
to TRUE
so R
will center (subtract the mean) and scale (divide by the standard deviation) by each numeric column (i.e., z-score, normalize. or standardize the data). Now we can fit a PCA model on the training data:
<- prcomp(PCA.train %>% select(all_of(features_65_num$feature)),
A_DATA_2.pca.model center=TRUE,
scale=TRUE)
<- summary(A_DATA_2.pca.model)
A_DATA_2.pca.sum
A_DATA_2.pca.sum#> Importance of components:
#> PC1 PC2 PC3 PC4 PC5 PC6 PC7
#> Standard deviation 2.5932 1.8469 1.3480 1.11308 0.99830 0.92194 0.90134
#> Proportion of Variance 0.3736 0.1895 0.1010 0.06883 0.05537 0.04722 0.04513
#> Cumulative Proportion 0.3736 0.5631 0.6641 0.73290 0.78826 0.83548 0.88062
#> PC8 PC9 PC10 PC11 PC12 PC13 PC14
#> Standard deviation 0.67495 0.62261 0.51934 0.49271 0.4799 0.40570 0.37000
#> Proportion of Variance 0.02531 0.02154 0.01498 0.01349 0.0128 0.00914 0.00761
#> Cumulative Proportion 0.90593 0.92746 0.94245 0.95593 0.9687 0.97787 0.98548
#> PC15 PC16 PC17 PC18
#> Standard deviation 0.30437 0.29754 0.22877 0.16703
#> Proportion of Variance 0.00515 0.00492 0.00291 0.00155
#> Cumulative Proportion 0.99062 0.99554 0.99845 1.00000
You can see there are 18 principal components, with each explaining a proportion of the variability in the data. For example, PC1 explains 37.36% of the total variance; the first 5 principal components account for over 78.826% of the variance; the first 10 principal components account for over 94.245% of the variance.
10.6.2 Plot Principal Components
The biplot is used to visualize principal components. This plots the first and second principal components. The closer the variable is the the center, the less contribution that variable has to either principal component. The configuration of arrows reflects the relations of the variables. The cosine of the angle (the dot product) between the arrows reflects the correlation between the variables they represent, and the principal component.
::ggplot_pca(A_DATA_2.pca.model, arrows_colour = 'red') # note here that the assumption is to plot PC1 V PC2 AMR
This is the first versus the third principal component, again notice the magnitude and direction of the vector with relation to the first principal component:
::ggplot_pca(A_DATA_2.pca.model,
AMRchoices = c(1,3), # here we specify PC1 V PC3
arrows_colour = 'red')
And now here’s a look at the second versus the third, we see everything is concentrated near the origin (Remark when we zoomed in with coord_cartesian
some points were excluded from the Figure below)
::ggplot_pca(A_DATA_2.pca.model,
AMRchoices = c(2,3),
arrows_colour = 'red',
arrows_size = 1,
arrows_textsize = 4) +
coord_cartesian(xlim = c(-5,5), ylim=c(-5,5))
10.6.3 Scree Plot
We aim to find the components with the maximum variance so we can retain as much information about the original dataset as possible.
To determine the number of principal components to retain in our analysis we need to compute the proportion of variance explained.
We can plot the cumulative proportion of variance explained in a scree plot to determine the number of principal components to retain:
<- A_DATA_2.pca.model$sdev^2
var_exp
# Proportion of variance explained
<- var_exp/sum(var_exp)
pct_var_exp
<- as_tibble(cbind(var_exp, pct_var_exp))
Prop_Var_Explained_df
$PC <- 1:nrow(Prop_Var_Explained_df)
Prop_Var_Explained_df
<- Prop_Var_Explained_df %>%
Prop_Var_Explained_df mutate(cum_pct = cumsum(pct_var_exp))
%>%
Prop_Var_Explained_df ggplot(aes(x=PC, y=cum_pct)) +
geom_point() +
geom_smooth()
#> `geom_smooth()` using method = 'loess' and formula 'y ~ x'
<- min(Prop_Var_Explained_df$cum_pct)
min_cum_pct
min_cum_pct#> [1] 0.3735985
<- Prop_Var_Explained_df %>%
pc_var2 filter(cum_pct <= max(0.8, min_cum_pct))
%>%
pc_var2 head()
#> # A tibble: 5 x 4
#> var_exp pct_var_exp PC cum_pct
#> <dbl> <dbl> <int> <dbl>
#> 1 6.72 0.374 1 0.374
#> 2 3.41 0.190 2 0.563
#> 3 1.82 0.101 3 0.664
#> 4 1.24 0.0688 4 0.733
#> 5 0.997 0.0554 5 0.788
ggplot(pc_var2, aes(x = reorder(PC, pct_var_exp), y = pct_var_exp)) +
geom_bar(stat = "identity") +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(x = "Principal Components", y = "% Variance Explained")
Next let’s get the eigenvectors
<- as_tibble(A_DATA_2.pca.model$rotation , rownames='Feature')
rotation_tibble
%>%
rotation_tibble head()
#> # A tibble: 6 x 19
#> Feature PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8 PC9
#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
#> 1 BPXDI3 0.183 0.259 -0.469 -0.0709 -0.0571 0.119 -0.0323 0.0113 0.00534
#> 2 BPXSY3 0.226 0.348 0.240 0.00761 0.0530 -0.125 -0.0362 0.148 -0.300
#> 3 BPXDI2 0.189 0.267 -0.459 -0.0724 -0.0623 0.121 -0.0284 -0.00765 0.0146
#> 4 BPXSY2 0.228 0.352 0.248 0.0106 0.0458 -0.116 -0.0335 0.129 -0.279
#> 5 BPXDI1 0.192 0.262 -0.432 -0.0645 -0.0549 0.109 -0.0266 -0.0253 0.0381
#> 6 BPXSY1 0.226 0.343 0.258 0.0241 0.0408 -0.104 -0.0363 0.0732 -0.188
#> # ... with 9 more variables: PC10 <dbl>, PC11 <dbl>, PC12 <dbl>, PC13 <dbl>,
#> # PC14 <dbl>, PC15 <dbl>, PC16 <dbl>, PC17 <dbl>, PC18 <dbl>
Get the values per the feature
<- rotation_tibble %>%
rotation_tibble_T pivot_longer(-Feature, names_to = 'variable', values_to = 'value')
%>%
rotation_tibble_T head()
#> # A tibble: 6 x 3
#> Feature variable value
#> <chr> <chr> <dbl>
#> 1 BPXDI3 PC1 0.183
#> 2 BPXDI3 PC2 0.259
#> 3 BPXDI3 PC3 -0.469
#> 4 BPXDI3 PC4 -0.0709
#> 5 BPXDI3 PC5 -0.0571
#> 6 BPXDI3 PC6 0.119
Plot the results of the feature’s contribution to the PC - lets do the 1st below:
%>%
rotation_tibble_T filter(variable == paste0("PC", 1)) %>%
ggplot(aes(x = Feature, y = value)) +
geom_bar(stat = "identity") +
coord_flip() +
ylab("Relative Importance")
10.6.3.1 proc.pca
We can functionalize the entire above process and enhance the proportion of variance explained graph with a ggplot:
<- function(data ){
proc.pca
# fit PCA model
<- prcomp(data,
data.pca center=TRUE,
scale=TRUE)
<- function(choices = c(1,2) , # these are the things I probably want to pass into biplot
biplot_function arrows_colour = "red",
arrows_size = 1,
arrows_textsize = 4, # the ... should pass anything else
...){::ggplot_pca(data.pca,
AMRchoices = choices,
arrows = TRUE,
arrows_colour = arrows_colour, # I think Red is easier to see on Black
arrows_size = arrows_size, # bigger arrows
arrows_textsize = 4, #bigger text size
...)
}
# Proportion of variance explained
<- data.pca$sdev^2
var_exp
<- var_exp/sum(var_exp)
pct_var_exp
<- as_tibble(cbind(var_exp ,pct_var_exp))
Prop_Var_Explained_df
$PC <- 1:nrow(Prop_Var_Explained_df)
Prop_Var_Explained_df
<- Prop_Var_Explained_df %>%
Prop_Var_Explained_df mutate(cum_pct = cumsum(pct_var_exp)) %>%
select(PC, var_exp, pct_var_exp, cum_pct)
# scree plot
<- Prop_Var_Explained_df %>%
scree_plot ggplot(aes(x=PC, y=cum_pct)) +
geom_point() +
geom_smooth()
# PC_var_Explained_bar
<- min(Prop_Var_Explained_df$cum_pct)
min_cum_pct
<- function(variance_cap = 0.8){
PC_var_Explained_bar
<- Prop_Var_Explained_df %>%
pc_var2 filter(cum_pct <= max(variance_cap, min_cum_pct))
<- ggplot(pc_var2, aes(x = reorder(PC, pct_var_exp), y = pct_var_exp)) +
PC_var_Explained_bar geom_bar(stat = "identity") +
scale_y_continuous(labels = scales::percent) +
coord_flip() +
labs(x = "Principal Components", y = "% Variance Explained")
return(PC_var_Explained_bar)
}
#Feature_Imp_PC
# eigenvectors
<- as_tibble(A_DATA_2.pca.model$rotation , rownames='Feature')
rotation_tibble
# get the values per the feature
<- rotation_tibble %>%
rotation_tibble_T pivot_longer(-Feature, names_to = 'variable', values_to = 'value')
# here's a nice plot of the feature's contribution to the PC
<- function(PC_Num = 1){
Feature_Imp_PC %>%
rotation_tibble_T filter(variable == paste0("PC", PC_Num)) %>%
mutate(Feature = reorder(Feature, value)) %>%
ggplot(aes(x = Feature, y = value)) +
geom_bar(stat = "identity") +
coord_flip() +
ylab("Relative Importance") +
labs(title = paste0("PC",PC_Num))
}
#QED
return(list(PCA_Sum = summary(data.pca) ,
Prop_Var_Explained_df = Prop_Var_Explained_df,
scree_plot = scree_plot,
biplot = biplot_function,
PC_var_Explained_bar = PC_var_Explained_bar,
Feature_Imp_PC = Feature_Imp_PC)
) }
10.6.3.1.1 test proc.pca
Now we can test our function:
<- proc.pca(PCA.train %>% select(all_of(features_65_num$feature))) OUTPUT.proc.pca
Let’s check out the Relative Feature Importance in PC8, for instance:
$Feature_Imp_PC(8) OUTPUT.proc.pca
Again note how most of the variance is explained by the PC1:
$PC_var_Explained_bar(1) OUTPUT.proc.pca
Also note the high Feature Relative Importance of features like BMXWT
, Age
and BMXBMI
in this graph in Figure below:
$Feature_Imp_PC(1) OUTPUT.proc.pca
and the corresponding magnitude and direction of the vector in the plot in Figure below:
$biplot(c(1,2)) +
OUTPUT.proc.pcacoord_cartesian(ylim=c(-2.5,2.5))
At the same time, note the above magnitude and direction of BPXPLS
corresponding to the negative feature relative importance in PC2 in Figure below:
$Feature_Imp_PC(2) OUTPUT.proc.pca
Getting back on track, we recall
$Prop_Var_Explained_df %>%
OUTPUT.proc.pcafilter(3 <= PC & PC <= 7 ) %>%
kbl() %>%
kable_paper("striped", full_width = F) %>%
row_spec(3, bold = T, color = "white", background = "#D7261E")
PC | var_exp | pct_var_exp | cum_pct |
---|---|---|---|
3 | 1.8172379 | 0.1009577 | 0.6640650 |
4 | 1.2389422 | 0.0688301 | 0.7328952 |
5 | 0.9966022 | 0.0553668 | 0.7882619 |
6 | 0.8499791 | 0.0472211 | 0.8354830 |
7 | 0.8124173 | 0.0451343 | 0.8806173 |
So knowing 5 Principal Components accounts for about 84.3% of the variance of the data observed in the PCA.train
dataset.
10.6.4 Modeling with PCs
We will quickly compare models using:
- all of the numeric features
- the first 5 PCs
- 5 random features
First, we’ll use the predict
to predict the PCAs onto PCA.train
, we then attach those predictions to PCA.train
with the cbind
:
<- cbind(PCA.train, predict(A_DATA_2.pca.model, PCA.train))
PCA.PCA.train
%>%
PCA.PCA.train glimpse()
#> Rows: 62,105
#> Columns: 42
#> $ SEQN <dbl> 46160, 7875, 29649, 30336, 78095, 91585, 49315, 4~
#> $ DIABETES <dbl> 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
#> $ Gender <chr> "Female", "Female", "Female", "Female", "Female",~
#> $ Race <chr> "White", "White", "Black", "White", "Other Hispan~
#> $ Family_Income <chr> "$ 0 to $ 4,999", NA, NA, NA, "$ 0 to $ 4,999", "~
#> $ BPXDI3 <dbl> 64.00000, 76.00000, 66.11492, 68.00000, 90.00000,~
#> $ BPXSY3 <dbl> 100.0000, 90.0000, 118.8599, 116.0000, 212.0000, ~
#> $ BPXDI2 <dbl> 70.00000, 72.00000, 66.05193, 68.00000, 98.00000,~
#> $ BPXSY2 <dbl> 102.0000, 94.0000, 119.4753, 118.0000, 200.0000, ~
#> $ BPXDI1 <dbl> 70.00000, 80.00000, 65.88837, 70.00000, 92.00000,~
#> $ BPXSY1 <dbl> 104.0000, 96.0000, 119.5301, 118.0000, 204.0000, ~
#> $ BMXLEG <dbl> 42.50000, 38.50000, 38.95650, 37.90000, 36.40000,~
#> $ BPXML1 <dbl> 130.0000, 120.0000, 146.0224, 150.0000, 220.0000,~
#> $ BPXPLS <dbl> 82.00000, 94.00000, 76.42917, 64.00000, 84.00000,~
#> $ PEASCTM1 <dbl> 484.0000, 690.0000, 126.0000, 651.0000, 821.0000,~
#> $ BMXWAIST <dbl> 82.60000, 92.30000, 51.70000, 79.60000, 77.70000,~
#> $ BMXBMI <dbl> 24.58000, 26.23000, 15.37000, 24.01000, 21.50000,~
#> $ BMXHT <dbl> 163.5000, 163.7000, 116.6000, 147.6000, 156.0000,~
#> $ BMXARMC <dbl> 29.20000, 31.90000, 17.70000, 23.80000, 23.10000,~
#> $ BMXARML <dbl> 36.30000, 35.70000, 23.00000, 31.20000, 33.40000,~
#> $ Poverty_Income_Ratio <dbl> 0.29, 4.51, 2.15, 5.00, 0.02, 3.31, 0.57, 1.36, 1~
#> $ BMXWT <dbl> 65.70000, 70.30000, 20.90000, 52.30000, 52.40000,~
#> $ Age <dbl> 19, 14, 5, 48, 51, 42, 23, 10, 38, 14, 80, 81, 44~
#> $ DIABETES_factor <fct> 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
#> $ PC1 <dbl> -0.8752034, -0.5059119, -3.6213223, -0.2741463, 5~
#> $ PC2 <dbl> -1.357014885, -2.061359525, 2.470355725, 0.563217~
#> $ PC3 <dbl> -1.5343935, -2.9989493, -0.2988726, -0.1222763, 2~
#> $ PC4 <dbl> -0.27355317, -0.87481013, 0.22573202, 1.12254192,~
#> $ PC5 <dbl> 1.41675221, -1.48805756, 0.38779207, -1.78643532,~
#> $ PC6 <dbl> 0.02359763, -0.95201204, -0.54183187, 0.29288089,~
#> $ PC7 <dbl> -0.68676342, -0.21594779, 0.51125002, 0.67567141,~
#> $ PC8 <dbl> -0.56022967, 0.13797055, -0.24147595, 0.10008451,~
#> $ PC9 <dbl> 0.12384792, 0.35119581, -0.06303190, 0.29760064, ~
#> $ PC10 <dbl> 0.17544669, 0.09482743, 0.07976258, 0.50663257, -~
#> $ PC11 <dbl> -0.253751180, -0.475424150, 0.062030753, 0.028768~
#> $ PC12 <dbl> 0.1393515881, 0.0479600873, 0.2915428526, -0.2226~
#> $ PC13 <dbl> -0.316442862, 0.218737608, 0.003815722, 0.0271017~
#> $ PC14 <dbl> -0.02763135, -0.10887048, 0.01630495, 0.09848579,~
#> $ PC15 <dbl> 0.02440551, -0.20997949, 0.14573544, 0.11248075, ~
#> $ PC16 <dbl> -0.0213528612, 0.2328745767, -0.0009075528, 0.058~
#> $ PC17 <dbl> 0.008782960, 0.097489083, 0.011334128, -0.2087617~
#> $ PC18 <dbl> -0.122097162, 0.007710023, 0.132307401, -0.144167~
Recall our features were
$feature
features_65_num#> [1] "BPXDI3" "BPXSY3" "BPXDI2"
#> [4] "BPXSY2" "BPXDI1" "BPXSY1"
#> [7] "BMXLEG" "BPXML1" "BPXPLS"
#> [10] "PEASCTM1" "BMXWAIST" "BMXBMI"
#> [13] "BMXHT" "BMXARMC" "BMXARML"
#> [16] "Poverty_Income_Ratio" "BMXWT" "Age"
We can make a formula:
<- paste0(features_65_num$feature, collapse = " + ")
features_plus
features_plus#> [1] "BPXDI3 + BPXSY3 + BPXDI2 + BPXSY2 + BPXDI1 + BPXSY1 + BMXLEG + BPXML1 + BPXPLS + PEASCTM1 + BMXWAIST + BMXBMI + BMXHT + BMXARMC + BMXARML + Poverty_Income_Ratio + BMXWT + Age"
<- paste0("DIABETES_factor ~ ", features_plus)
feature_fomula
feature_fomula#> [1] "DIABETES_factor ~ BPXDI3 + BPXSY3 + BPXDI2 + BPXSY2 + BPXDI1 + BPXSY1 + BMXLEG + BPXML1 + BPXPLS + PEASCTM1 + BMXWAIST + BMXBMI + BMXHT + BMXARMC + BMXARML + Poverty_Income_Ratio + BMXWT + Age"
Let’s also choose 5 random features for good measure
set.seed(86753094)
<- paste0("DIABETES_factor ~ ",
feature_rand_5_formula paste0(sample(features_65_num$feature, 5, replace = FALSE ),
collapse = " + "))
feature_rand_5_formula#> [1] "DIABETES_factor ~ BMXLEG + BPXSY3 + Poverty_Income_Ratio + BMXHT + PEASCTM1"
And now we can train our three models:
<- glm(DIABETES_factor ~ PC1 + PC2 + PC3 + PC4 + PC5,
logit_PCA data = PCA.PCA.train,
family = binomial(link = 'logit'))
<- glm(as.formula(feature_fomula),
logit_features data = PCA.PCA.train,
family = binomial(link = 'logit'))
<- glm(as.formula(feature_rand_5_formula),
logit_rand_5 data = PCA.PCA.train,
family = binomial(link = 'logit'))
There is an issue: the test set does not know what it’s PCAs are at this moment, the PCA model was trained on the training set. Therefore, we will need to apply the PCAs model to the test set to get the predicted PCAs:
<- cbind(PCA.test, predict(A_DATA_2.pca.model, PCA.test)) PCA.PCA.test
We can utilize our helper from the last chapter,
we added additional parameters for the target
and the level
, now this helper-function can be utilized with other data-frames that do not contain the column DIABETES_factor
, this will still add on three additional columns to the data frame to be scored probs
, pred
and pred_factor
where pred
is set to 1 if over the mean probability score of the target
at the level
in the training dataset.
<- function(my_model, my_data, target , level){
logit_model_scorer # extracts models name
<- deparse(substitute(my_model))
my_model_name
<- enquo(target)
enquo_target
# store model name into a new column called model
<- my_data %>%
data.s mutate(model = my_model_name)
# store the training data someplace
<- my_model$data
train_data.s
# score the training data
$probs <- predict(my_model,
train_data.s
train_data.s, 'response')
# threshold query
<- train_data.s %>%
threshold_value_query group_by(!!enquo_target) %>%
summarise(mean_prob = mean(probs, na.rm=TRUE)) %>%
ungroup() %>%
filter(!!enquo_target == level)
# threshold value
<- threshold_value_query$mean_prob
threshold_value
# score test data
$probs <- predict(my_model,
data.s
data.s, 'response')
# use threshold to make prediction
<- data.s %>%
data.s mutate(pred = if_else(probs > threshold_value, 1,0)) %>%
mutate(pred_factor = as.factor(pred))
# return scored data
return(data.s)
}
And we can get a quick comparison of the ROC Curves
10.6.5 Effectiveness of PCs as features
library('yardstick')
#> For binary classification, the first factor level is assumed to be the event.
#> Use the argument `event_level = "second"` to alter this as needed.
#>
#> Attaching package: 'yardstick'
#> The following object is masked from 'package:readr':
#>
#> spec
<- bind_rows(
compare_models logit_model_scorer(logit_PCA, PCA.PCA.test, DIABETES_factor, 1),
logit_model_scorer(logit_features, PCA.PCA.test, DIABETES_factor, 1),
logit_model_scorer(logit_rand_5, PCA.PCA.test, DIABETES_factor, 1),
)
<- compare_models %>%
model_AUCS group_by(model) %>%
roc_auc(truth= DIABETES_factor, probs, event_level = "second") %>%
mutate(model_AUC = paste(model , " AUC : ", round(.estimate,4)))
%>%
compare_models left_join(model_AUCS) %>%
group_by(model_AUC) %>%
roc_curve(truth= DIABETES_factor, probs, event_level = "second") %>%
autoplot()
#> Joining, by = "model"
In this instance the model with the first 5 PCAs performed better than a model with 5 features chosen at random.
<- function(x,y){
Percent_Diff return(abs(x-y)/mean(x,y)*100)
}
<- model_AUCS %>%
percent_diff_auc_Table select(-model_AUC) %>%
pivot_wider(names_from = model, values_from = .estimate) %>%
mutate(percent_diff_auc.all_PCA = Percent_Diff(logit_features, logit_PCA)) %>%
mutate(percent_diff_auc.PCA_rand_5 = Percent_Diff(logit_PCA, logit_rand_5))
%>%
percent_diff_auc_Table glimpse()
#> Rows: 1
#> Columns: 7
#> $ .metric <chr> "roc_auc"
#> $ .estimator <chr> "binary"
#> $ logit_features <dbl> 0.8827921
#> $ logit_PCA <dbl> 0.8496852
#> $ logit_rand_5 <dbl> 0.7806718
#> $ percent_diff_auc.all_PCA <dbl> 3.750239
#> $ percent_diff_auc.PCA_rand_5 <dbl> 8.122242
So there’s only a 3.75% percent difference in Area between the logistic regression model with all of the features and the model with the first 5 PCs, and there is a 8.12% percent difference between the model with the first 5 PCs and a model with 5 features chosen at random.
\(~\)
\(~\)
10.7 k-means Clustering
k-means clustering that aims to partition \(n\) observations into \(k\) clusters in which each observation belonging to the cluster with the nearest mean (cluster centers or cluster centroid), serving as a prototype of the cluster.
set.seed(657)
<- sample(A_DATA_2.Num.impute$SEQN,
Sample_Id nrow(A_DATA_2.Num.impute)*.4,
replace = FALSE)
<- A_DATA_2.Num.impute %>%
DATA_65.impute.sample filter(SEQN %in% Sample_Id) %>%
mutate_at(all_of(features_65_num$feature), scale)
10.7.1 How do we estimate the number of clusters?
<- function(data, k = 1:9){
proc.kmeans
<-
kclusts tibble(k = k) %>%
mutate(
kclust = map(k, ~kmeans(data, .x)),
glanced = map(kclust, glance),
augmented = map(kclust, augment, data)
)
<- function(final_k = 5){
kmeans_model %>%
(kclusts filter(k == final_k))$kclust[[1]]
}
<- colnames(kclusts)
id_vars
<- kclusts %>%
cluster_assignments unnest(cols = augmented)
<- setdiff(colnames(cluster_assignments), c(id_vars,'.cluster'))
vars
<- kclusts %>%
within_cluster_variation_plot unnest(cols = c(glanced)) %>%
ggplot(aes(k, tot.withinss)) +
geom_line() +
geom_point() +
labs(title = "Within Cluster Variation versus number of Clusters")
<- cluster_assignments %>%
kmeans.pca select(all_of(vars)) %>%
prcomp()
<- kmeans.pca %>%
cluster_assignments_plot augment(cluster_assignments) %>%
ggplot( aes(x = .fittedPC1, y = .fittedPC2, color = .cluster )) +
geom_point(alpha = 0.8) +
facet_wrap(~ k) +
labs(title = "k-means clusterings")
return(list(cluster_assignments_plot= cluster_assignments_plot,
within_cluster_variation_plot=within_cluster_variation_plot,
kmeans_model = kmeans_model))
}
library('broom')
<- Sys.time()
tic
<- proc.kmeans(DATA_65.impute.sample %>%
proc.kmeans.results select(all_of(features_65_num$feature)),
k = 3:11)
<- Sys.time()
toc
- tic
toc #> Time difference of 6.877247 secs
$cluster_assignments_plot proc.kmeans.results
<- function(data, nc=15){
cluster_wgss
<- 1:nc
clusters
<- purrr::map_dfr(clusters,
wss function(N_Clusters){
= sum(kmeans(data, centers = N_Clusters)$withinss)
wgss
tibble(N_Clusters, wgss)
} ) }
%>%
DATA_65.impute.sample select(all_of(features_65_num$feature)) %>%
cluster_wgss(nc=10) %>%
ggplot(aes(x= N_Clusters, y= wgss)) +
geom_point() +
geom_line() +
labs(title = "Within group Sum of Squares Plot",
x="Number of Clusters",
y="Within groups sum of squares")
#> Warning: did not converge in 10 iterations
Above, we see a bend in the curve at around 5 so below we will run a kmeans
experiment with (\(k\)) centers = 5
.
kmeans
has an additional options, here I chose 15 for the number of random starting positions:
set.seed(12345)
<- kmeans(DATA_65.impute.sample %>% select(all_of(features_65_num$feature)) ,
km centers = 5,
iter.max= 15,
nstart = 15)
km#> K-means clustering with 5 clusters of sizes 5298, 14412, 7873, 4354, 6281
#>
#> Cluster means:
#> BPXDI3 BPXSY3 BPXDI2 BPXSY2 BPXDI1 BPXSY1
#> 1 -1.18757431 -0.97753315 -1.21899580 -0.99079920 -1.21528212 -0.99530237
#> 2 -0.03717229 -0.31811843 -0.04569126 -0.31710079 -0.05774348 -0.30791737
#> 3 0.46523940 0.20793980 0.47323149 0.20193256 0.48459640 0.19459877
#> 4 0.74498644 1.89536565 0.79672958 1.91549832 0.82192371 1.91668911
#> 5 -0.01257841 -0.02003481 -0.01241362 -0.01760612 -0.01960191 -0.02651225
#> BMXLEG BPXML1 BPXPLS PEASCTM1 BMXWAIST BMXBMI
#> 1 -0.83034756 -0.91876984 0.57067272 0.1965214 -0.69573116 -0.69358384
#> 2 0.17445304 -0.26608589 -0.11958988 0.1863414 -0.01865886 -0.08802613
#> 3 0.39760560 0.14150239 0.02309796 0.4195544 1.17269198 1.21648161
#> 4 -0.19257897 1.78317204 -0.36077635 0.5614782 0.55100870 0.36744076
#> 5 -0.06478202 -0.02794252 0.01418170 -1.5084462 -1.22222587 -0.99251027
#> BMXHT BMXARMC BMXARML Poverty_Income_Ratio BMXWT Age
#> 1 -0.2898939 -0.6003371 -0.2688240 -0.18203388 -0.59570920 -0.6876412
#> 2 0.3712827 0.1157080 0.3367366 0.05027904 0.09559683 0.0637058
#> 3 0.6681734 1.1599990 0.7658356 0.20253611 1.21095460 0.5397692
#> 4 0.3846618 0.4127052 0.4967846 0.06072111 0.41992904 1.3187380
#> 5 -1.7115770 -1.4992181 -1.8502216 -0.25778578 -1.52585430 -1.1568848
#>
#> Clustering vector:
#> [1] 2 2 2 2 3 5 3 4 2 2 4 2 2 2 5 2 4 1 2 2 3 2 3 2 2 4 2 1 4 4 4 2 5 2 5 2
#> [37] 2 3 5 1 4 5 3 3 4 1 2 2 1 5 2 5 5 2 4 4 3 3 2 3 1 5 2 5 3 3 2 4 1 2 1 3
#> [73] 4 2 4 2 4 1 3 2 5 1 1 1 3 2 2 5 2 4 4 2 5 2 2 5 4 2 1 1 2 2 2 3 2 1 2 2
#> [109] 2 3 5 1 5 2 2 2 2 1 2 5 2 2 2 2 4 3 1 1 3 4 2 3 2 1 1 1 2 1 1 4 5 3 2 1
#> [145] 3 4 2 4 5 3 4 4 2 5 1 1 2 5 5 3 1 4 2 2 1 3 5 2 2 2 5 4 2 3 4 5 5 3 5 2
#> [181] 2 5 5 2 2 5 3 4 3 1 5 5 2 5 2 3 2 5 2 1 1 2 2 3 5 3 3 1 4 2 2 3 3 2 3 3
#> [217] 2 2 3 5 2 4 2 2 4 1 1 4 1 5 2 4 3 3 5 2 2 3 4 5 5 3 5 2 1 5 4 5 2 5 2 1
#> [253] 3 5 2 3 2 4 4 2 2 2 3 5 2 1 3 2 1 3 4 2 2 1 4 2 2 2 4 2 5 2 5 1 3 1 5 5
#> [289] 2 5 2 2 3 1 1 3 5 2 3 4 2 1 1 2 5 4 2 4 3 1 2 2 2 2 5 2 2 3 5 2 3 4 5 1
#> [325] 4 5 5 5 3 3 2 1 2 3 1 2 2 3 5 5 5 2 2 4 2 2 4 3 5 3 4 3 2 5 3 2 4 2 5 2
#> [361] 2 3 1 4 5 2 2 1 2 4 5 2 2 2 3 3 3 3 5 4 2 3 3 3 2 2 4 1 2 2 2 3 4 2 5 2
#> [397] 4 4 1 1 2 3 4 3 3 2 5 4 4 4 2 3 2 3 2 5 1 4 2 5 5 5 5 4 5 5 5 5 1 2 2 5
#> [433] 1 2 2 4 2 4 5 5 2 5 2 3 4 2 4 2 3 3 3 5 1 1 5 5 3 3 1 2 3 2 5 4 2 5 1 1
#> [469] 5 2 2 1 2 4 4 4 3 5 4 2 2 4 2 2 5 2 1 5 1 5 1 2 4 3 3 2 1 3 5 3 5 2 5 2
#> [505] 5 5 3 2 2 3 2 4 3 3 4 2 2 1 2 2 2 5 3 1 5 1 5 3 1 2 2 5 2 3 2 5 2 2 3 4
#> [541] 4 2 2 3 5 2 3 3 5 2 3 2 2 3 2 2 5 5 5 2 2 2 2 3 3 5 3 2 3 2 5 3 5 3 4 2
#> [577] 2 2 2 2 3 2 1 1 2 2 2 5 2 2 1 3 3 5 3 2 4 2 3 3 2 2 2 3 2 4 1 4 5 5 2 2
#> [613] 3 3 5 5 1 3 1 2 5 2 2 2 3 1 4 2 5 2 4 5 5 5 2 4 2 2 4 2 2 2 2 3 1 4 2 3
#> [649] 2 4 5 3 2 3 2 3 2 1 2 3 1 2 4 1 3 1 2 1 2 1 4 1 3 2 3 2 2 2 3 2 2 1 2 1
#> [685] 3 1 2 3 3 2 3 3 3 5 1 2 4 3 2 5 5 2 3 5 3 2 5 5 2 5 5 2 5 5 2 5 2 1 2 3
#> [721] 5 5 1 3 5 3 5 2 2 2 2 2 1 1 3 1 2 4 5 5 3 1 4 2 3 1 2 2 1 2 2 2 1 1 3 2
#> [757] 3 2 2 1 3 2 2 2 2 3 1 4 3 2 3 2 5 2 4 1 2 2 5 4 2 5 1 3 5 3 1 2 2 5 3 3
#> [793] 1 5 2 2 4 3 1 3 3 3 2 4 2 2 3 2 3 2 3 2 3 2 1 5 3 1 3 2 2 2 5 2 3 5 4 1
#> [829] 1 2 1 2 2 4 3 4 3 2 2 3 2 3 2 2 2 3 5 2 2 1 3 2 5 5 2 5 1 3 4 2 2 2 2 2
#> [865] 2 3 5 2 5 5 2 5 2 3 2 5 5 1 3 3 4 3 2 5 2 2 1 4 1 2 4 2 1 2 1 3 1 3 5 3
#> [901] 3 2 4 4 3 2 2 3 2 2 4 2 2 1 3 2 5 4 5 1 2 3 4 2 3 2 4 2 3 3 4 2 1 2 2 2
#> [937] 2 5 2 2 5 2 5 5 5 3 3 5 1 2 2 1 1 2 3 2 3 2 2 2 3 1 2 2 2 5 5 2 4 5 2 2
#> [973] 2 1 2 2 5 2 2 3 2 2 2 2 2 4 2 4 1 3 5 2 5 3 5 2 3 5 4 2 2 2 2 3 3 1 2 2
#> [1009] 2 1 4 2 3 2 3 2 5 3 2 2 2 1 2 2 4 2 2 2 3 3 4 2 5 5 2 2 5 2 3 2 2 2 5 2
#> [1045] 2 2 5 4 3 2 2 1 1 2 3 2 5 4 5 1 2 2 3 2 3 3 3 2 3 5 4 3 2 4 5 1 5 2 3 3
#> [1081] 2 2 3 2 3 4 2 2 2 2 1 3 5 4 1 3 5 5 5 1 1 4 2 2 3 2 1 3 2 4 2 1 3 2 2 4
#> [1117] 5 4 3 5 4 4 3 1 3 2 2 5 2 2 5 3 2 2 1 5 2 5 4 3 2 2 1 3 2 5 2 2 5 2 2 3
#> [1153] 3 2 4 3 2 5 1 1 2 1 4 3 3 4 2 3 3 2 2 5 3 2 1 3 4 4 1 3 2 3 2 4 5 2 3 2
#> [1189] 3 5 4 2 2 2 2 4 2 3 2 5 5 5 2 2 5 2 3 2 3 4 2 3 2 2 5 4 2 4 3 2 5 1 3 4
#> [1225] 3 1 1 3 1 5 1 4 2 1 3 3 5 1 2 3 2 2 4 4 3 2 2 1 3 1 2 5 2 1 1 2 2 2 2 2
#> [1261] 1 2 4 2 4 2 1 1 2 2 5 2 2 5 2 1 5 2 2 2 2 2 3 2 2 2 3 2 2 4 1 2 3 4 3 5
#> [1297] 1 1 3 5 1 2 2 5 2 5 2 4 3 4 2 3 1 1 1 1 5 2 3 5 2 1 2 2 2 4 2 3 4 2 4 2
#> [1333] 3 2 5 2 3 5 2 2 2 2 2 2 2 2 3 3 2 4 1 2 2 5 2 5 2 5 4 3 5 5 2 5 2 5 3 2
#> [1369] 4 3 1 3 4 2 3 5 2 3 2 2 4 2 5 3 2 3 5 5 2 3 1 4 1 2 3 2 1 4 2 5 3 4 3 2
#> [1405] 2 3 2 1 2 5 3 2 3 2 1 1 2 4 1 4 2 2 2 4 2 3 2 1 5 2 3 3 1 3 2 4 4 4 1 5
#> [1441] 3 2 3 2 2 4 3 5 2 2 2 2 3 1 1 3 2 1 5 3 3 5 3 3 1 3 5 1 2 3 2 4 5 2 2 3
#> [1477] 2 3 5 2 5 2 2 3 4 4 1 3 5 3 3 4 2 4 5 4 3 4 3 4 3 3 5 2 3 5 3 2 4 1 2 2
#> [1513] 4 2 3 3 2 1 4 5 2 3 2 2 3 5 3 5 3 1 1 5 2 4 3 2 1 5 3 3 2 3 1 2 4 4 5 2
#> [1549] 2 3 2 4 3 2 1 5 5 5 5 2 5 2 3 2 3 5 1 5 3 2 2 4 4 3 3 4 2 2 2 2 4 4 5 3
#> [1585] 2 5 3 2 4 5 2 2 2 3 2 3 4 2 3 3 2 5 5 2 2 2 2 2 3 5 5 3 3 1 2 1 2 4 1 2
#> [1621] 2 4 2 2 4 2 4 2 3 5 3 5 3 2 2 2 2 2 3 4 2 1 2 3 3 2 4 1 1 4 2 5 3 1 1 5
#> [1657] 2 2 3 2 5 1 2 1 4 2 3 2 2 5 5 2 5 1 2 5 4 4 3 2 2 1 2 2 2 1 2 5 4 4 5 2
#> [1693] 5 3 3 1 4 2 1 1 2 3 2 3 5 3 5 4 4 5 2 5 5 3 3 3 2 4 5 3 2 5 2 2 5 5 3 2
#> [1729] 2 2 2 3 5 5 2 4 2 4 5 2 5 2 2 2 3 2 2 2 4 2 3 2 2 2 3 3 1 2 1 5 5 5 2 2
#> [1765] 2 3 3 5 5 2 4 2 4 4 5 2 2 2 2 4 5 3 4 2 4 4 2 2 1 2 3 5 2 3 2 2 5 4 2 4
#> [1801] 1 5 4 3 2 2 2 4 2 2 2 2 4 2 1 2 4 1 5 4 5 1 2 2 3 2 2 3 2 2 2 3 3 5 2 2
#> [1837] 5 1 3 2 5 1 5 2 2 4 2 3 1 1 3 1 3 4 5 1 4 3 3 2 2 5 2 2 1 1 1 5 2 2 5 5
#> [1873] 5 5 1 2 1 3 2 3 2 4 2 2 2 5 5 1 3 1 1 2 1 3 2 3 2 5 3 2 5 2 1 1 5 3 2 5
#> [1909] 5 1 2 3 5 5 2 5 2 2 3 1 2 5 5 2 2 5 1 2 2 1 4 1 4 5 3 1 2 2 3 2 2 2 2 2
#> [1945] 5 4 3 3 5 4 1 5 1 2 3 5 4 5 3 5 2 2 1 4 3 5 5 2 3 5 3 2 2 2 2 2 2 5 2 4
#> [1981] 5 2 3 5 3 2 2 2 2 5 2 3 4 3 2 1 5 2 4 2 3 2 1 2 3 3 3 1 2 2 2 2 4 4 2 2
#> [2017] 2 4 2 5 3 2 4 1 4 2 3 5 4 2 2 2 3 3 3 4 2 2 2 4 3 5 2 2 2 2 2 2 2 1 3 4
#> [2053] 2 2 3 4 5 5 2 2 1 2 4 3 5 2 2 3 3 4 5 1 4 3 2 1 5 5 4 5 2 2 2 3 2 3 4 3
#> [2089] 2 3 3 1 2 1 3 2 3 1 4 2 2 1 1 2 2 2 3 5 2 2 3 2 5 4 5 4 1 2 3 3 2 2 2 1
#> [2125] 1 2 5 2 5 3 4 1 1 3 5 2 4 5 3 4 3 2 2 3 2 5 2 2 3 2 3 2 1 3 3 2 2 5 2 2
#> [2161] 3 2 2 3 2 2 3 1 2 5 5 2 2 1 3 3 2 5 2 1 3 2 4 1 2 2 4 2 2 5 2 2 2 2 4 2
#> [2197] 1 4 3 1 2 2 2 5 2 3 3 2 2 2 2 2 5 1 2 5 4 2 3 2 1 3 3 2 2 4 2 2 1 2 1 4
#> [2233] 5 2 5 4 2 2 1 2 3 2 2 3 2 2 2 4 1 4 4 3 2 5 5 1 2 2 5 5 2 1 2 4 3 2 5 3
#> [2269] 2 4 2 5 5 2 3 2 3 2 2 2 2 3 4 5 5 1 2 2 4 2 5 2 1 4 2 3 2 2 3 2 1 3 2 1
#> [2305] 1 5 5 2 2 4 5 1 5 2 2 5 1 1 4 5 2 2 2 5 2 1 4 3 2 2 1 2 5 5 2 2 2 2 2 2
#> [2341] 2 5 2 5 2 2 3 3 3 1 2 3 2 2 2 2 1 5 3 1 2 5 2 1 3 2 5 1 2 3 5 3 2 3 2 1
#> [2377] 2 3 3 3 2 3 1 2 3 1 4 2 2 5 3 1 2 5 1 4 3 3 2 2 2 4 2 2 2 5 5 1 1 4 5 4
#> [2413] 2 4 3 1 3 5 3 1 2 2 3 4 3 4 5 1 2 3 3 2 2 3 4 2 2 2 5 3 5 4 3 3 5 5 2 1
#> [2449] 2 1 2 2 2 3 2 2 2 2 3 1 5 3 2 2 3 3 3 3 2 3 3 2 3 2 5 2 3 2 3 3 2 2 4 4
#> [2485] 2 5 1 5 2 2 4 2 5 4 2 2 3 2 2 2 5 2 4 4 2 3 5 2 2 2 2 2 2 2 1 3 5 1 4 1
#> [2521] 5 5 2 1 3 5 3 3 2 2 3 5 3 2 2 5 4 2 5 4 3 2 3 4 2 5 5 2 5 2 5 2 3 4 1 2
#> [2557] 2 4 3 5 2 2 2 3 2 2 3 5 3 2 1 2 2 5 5 1 3 5 2 2 3 4 4 5 2 2 2 1 2 2 5 2
#> [2593] 1 2 3 2 2 5 3 2 2 2 5 2 2 1 5 5 1 4 3 2 2 2 2 3 5 4 1 2 2 2 4 5 5 3 4 2
#> [2629] 4 1 5 2 3 1 1 2 3 2 5 2 2 2 2 3 2 2 4 3 5 1 5 1 1 2 5 5 2 2 1 5 1 5 2 3
#> [2665] 2 2 2 2 3 1 5 2 3 2 3 3 5 4 3 2 3 2 5 5 2 3 5 1 1 2 5 1 2 5 1 2 2 2 1 5
#> [2701] 3 2 3 2 2 1 2 5 4 2 4 3 5 3 3 5 3 5 5 2 2 2 5 3 5 3 1 2 2 5 2 5 3 5 2 5
#> [2737] 2 4 2 4 5 1 3 5 2 2 2 3 1 3 5 3 5 4 2 5 2 2 5 2 2 5 1 2 2 5 2 2 2 4 5 3
#> [2773] 2 1 2 3 1 1 2 2 5 2 5 2 2 4 3 2 1 4 5 3 4 1 2 5 4 2 2 2 4 2 2 1 3 2 2 1
#> [2809] 4 4 3 2 3 3 2 3 3 3 5 3 2 2 5 2 2 1 3 5 2 2 2 3 2 4 4 3 1 2 2 2 2 2 1 2
#> [2845] 2 1 1 2 2 4 1 2 4 4 3 2 2 3 2 4 2 1 4 4 2 5 2 4 3 1 5 2 2 5 2 3 1 5 2 2
#> [2881] 2 5 1 4 2 2 2 2 3 2 5 1 5 3 3 2 2 1 5 5 1 1 5 3 1 3 3 2 3 1 2 2 2 1 2 3
#> [2917] 5 3 2 1 2 1 3 4 2 1 1 2 2 2 4 3 2 5 5 5 1 5 2 1 3 2 5 2 3 2 3 3 4 2 5 2
#> [2953] 2 5 2 2 3 2 5 5 2 2 2 2 3 3 2 2 1 4 2 1 2 2 1 4 4 2 2 3 5 1 2 5 4 2 3 2
#> [2989] 1 5 2 1 4 1 1 2 3 3 5 2 2 2 1 3 2 5 3 3 1 1 2 3 1 4 2 2 3 3 4 2 3 5 3 1
#> [3025] 4 4 2 4 3 1 1 4 2 1 5 5 2 1 2 1 5 5 3 1 3 2 2 2 4 1 2 4 4 5 4 2 4 4 4 2
#> [3061] 2 3 2 1 1 2 5 1 2 2 2 2 2 5 3 1 4 2 2 3 4 5 5 2 4 5 5 2 3 3 1 2 2 3 2 2
#> [3097] 3 2 2 3 2 1 2 1 1 1 2 5 2 5 3 4 2 2 2 1 2 3 2 4 4 5 2 2 3 5 1 5 3 5 4 5
#> [3133] 2 5 4 4 5 2 3 4 4 1 4 2 1 4 3 2 2 2 4 2 2 2 5 2 2 2 2 2 4 4 3 5 4 1 1 1
#> [3169] 5 4 3 5 5 1 1 3 5 2 1 4 2 2 3 1 2 3 3 2 2 2 4 3 1 2 3 5 5 3 1 2 3 3 2 3
#> [3205] 2 2 2 5 2 2 1 4 5 3 2 4 5 3 2 5 5 4 4 1 3 2 4 1 1 2 3 2 2 5 2 3 3 2 1 5
#> [3241] 4 1 2 1 2 1 2 3 2 1 2 2 4 1 3 2 2 1 1 3 2 4 3 5 2 4 5 3 2 2 5 2 2 1 3 1
#> [3277] 5 3 3 4 1 2 2 5 2 2 2 1 4 2 2 4 2 5 3 2 2 2 2 4 3 4 2 4 1 3 2 3 5 2 3 3
#> [3313] 5 2 5 4 4 2 5 2 2 2 4 2 2 2 2 5 3 3 5 5 2 3 5 5 2 2 4 2 2 2 5 1 2 2 1 3
#> [3349] 3 2 3 2 2 2 2 2 1 2 3 3 2 5 2 4 5 2 4 2 1 3 1 2 2 2 3 5 5 3 5 4 3 1 1 5
#> [3385] 2 3 2 3 2 3 3 1 2 3 5 2 5 2 2 2 2 2 3 4 2 1 2 2 2 2 2 3 3 2 1 5 3 1 3 1
#> [3421] 2 5 4 3 3 1 3 2 4 3 5 2 5 4 2 3 1 4 3 3 1 3 2 2 3 3 5 3 2 3 2 5 1 5 5 5
#> [3457] 5 5 5 3 3 4 5 4 2 2 3 2 2 2 4 2 1 2 4 2 5 2 1 3 2 1 1 3 2 3 4 2 2 3 2 2
#> [3493] 2 3 2 5 5 2 3 3 1 3 3 5 4 2 3 4 4 2 3 2 2 3 2 2 5 5 2 3 2 5 2 5 2 3 3 4
#> [3529] 2 2 5 2 4 5 2 3 1 2 5 5 5 2 4 5 2 2 2 5 1 3 1 1 3 2 5 4 2 3 5 1 1 1 2 3
#> [3565] 3 2 5 5 4 3 1 5 2 2 2 4 2 4 3 2 2 5 1 3 2 3 2 1 2 2 3 5 2 5 4 2 3 3 2 3
#> [3601] 5 2 3 2 3 2 2 1 5 2 3 2 2 1 3 4 3 3 3 3 3 2 3 4 2 3 3 2 2 5 2 2 2 5 1 2
#> [3637] 2 2 2 5 5 1 4 3 2 2 5 5 2 2 1 3 2 4 4 2 4 1 2 2 2 4 2 5 4 2 1 3 2 2 3 3
#> [3673] 4 4 2 1 3 2 2 2 4 4 2 1 4 4 3 4 4 2 2 2 5 4 3 2 1 2 3 2 3 3 2 5 2 2 5 2
#> [3709] 2 2 2 4 1 1 2 2 3 3 3 3 2 5 3 2 3 1 2 1 3 1 3 4 2 3 4 2 2 3 1 5 1 1 3 2
#> [3745] 3 2 2 2 2 3 2 1 3 2 2 5 2 2 2 5 1 1 3 1 2 4 2 2 3 1 2 2 2 3 2 3 2 4 2 5
#> [3781] 2 5 2 5 2 5 5 3 5 3 4 2 2 4 2 2 2 2 3 2 1 3 1 2 2 2 2 2 5 3 2 3 1 2 5 3
#> [3817] 2 5 5 2 2 1 4 2 2 1 3 5 4 1 3 2 2 5 4 5 2 4 2 5 3 2 2 4 3 2 2 4 3 3 2 5
#> [3853] 2 4 2 2 1 1 1 5 2 2 1 5 2 2 1 5 2 3 5 1 3 5 3 3 2 1 5 1 1 2 4 5 2 5 3 4
#> [3889] 1 2 5 3 1 2 2 2 2 1 5 5 2 2 5 1 1 2 5 1 1 3 3 2 4 1 5 2 4 3 5 1 1 1 4 3
#> [3925] 3 5 1 2 4 4 2 3 2 4 1 2 3 4 2 4 1 1 4 4 2 1 4 2 4 2 5 3 2 5 2 1 2 1 2 4
#> [3961] 2 2 3 2 2 2 3 1 1 2 4 1 2 5 3 1 5 2 2 2 1 4 5 4 1 2 5 3 5 2 3 1 2 5 1 1
#> [3997] 2 5 3 3 4 2 2 3 5 2 3 3 2 2 3 3 3 2 1 4 2 2 1 1 1 2 4 2 1 2 5 1 1 5 4 3
#> [4033] 5 3 2 2 1 2 4 2 4 3 5 3 5 2 2 3 2 2 5 1 2 4 3 2 2 2 2 2 5 2 3 2 2 2 3 2
#> [4069] 5 2 2 3 2 2 2 2 4 3 4 1 2 1 3 2 5 2 4 3 5 5 2 2 3 4 3 3 3 2 2 2 2 2 2 4
#> [4105] 3 2 2 5 3 2 2 2 5 2 2 2 2 2 2 2 3 4 1 2 1 2 4 3 5 1 3 3 5 4 1 1 3 2 2 2
#> [4141] 5 3 2 5 1 2 4 2 3 5 1 2 4 5 2 3 1 2 5 5 3 2 3 5 2 2 5 3 3 1 5 4 5 4 3 2
#> [4177] 2 4 2 3 3 2 4 2 1 5 2 2 4 5 5 3 5 3 3 2 1 5 3 5 2 5 2 5 2 4 2 3 3 1 2 5
#> [4213] 3 2 2 1 3 3 4 5 3 4 3 5 2 3 1 1 2 2 1 2 2 2 4 2 4 2 4 5 3 4 2 2 5 2 5 5
#> [4249] 2 1 5 2 3 2 5 3 4 2 2 2 3 3 4 5 3 4 4 1 5 3 2 3 2 2 2 1 3 5 2 2 5 4 3 2
#> [4285] 1 2 3 3 3 1 3 3 5 2 1 3 2 5 4 2 4 1 2 3 4 5 2 3 4 2 4 2 2 1 2 2 3 4 5 5
#> [4321] 4 1 2 2 1 5 2 3 2 5 3 2 2 2 5 2 1 2 1 5 1 2 2 2 2 4 3 1 2 5 5 2 2 1 1 2
#> [4357] 2 3 4 4 2 3 5 2 5 2 3 1 3 2 2 3 2 5 2 4 5 2 5 2 1 3 3 3 2 5 5 2 4 1 2 1
#> [4393] 3 4 1 5 5 5 3 2 5 2 3 1 2 5 1 3 1 4 3 3 3 3 3 2 2 1 2 2 2 1 5 3 5 4 2 4
#> [4429] 2 1 3 3 1 2 2 2 2 2 2 3 3 2 2 2 5 2 5 5 3 4 3 4 2 2 5 2 1 2 1 3 1 4 5 3
#> [4465] 2 3 3 1 1 2 3 2 2 4 2 1 2 5 5 4 1 4 2 4 2 2 2 2 2 2 3 2 4 4 3 4 4 5 2 2
#> [4501] 1 5 3 2 4 3 2 3 5 5 5 2 2 2 5 1 3 5 4 4 3 1 1 1 2 2 2 3 1 5 2 2 4 3 5 3
#> [4537] 3 2 3 2 2 5 5 2 2 2 2 2 2 2 2 4 2 2 3 5 2 2 3 4 4 2 1 5 4 3 5 3 1 1 3 2
#> [4573] 3 4 1 2 3 2 3 3 2 4 1 3 3 4 2 1 4 2 2 2 1 2 2 2 3 5 5 5 1 3 2 5 3 5 2 4
#> [4609] 2 2 3 1 5 3 2 1 2 4 1 3 1 2 2 2 3 2 5 4 2 3 4 5 1 1 3 4 5 5 2 2 1 1 2 1
#> [4645] 1 3 1 1 3 3 3 2 4 2 2 5 5 5 5 1 5 3 1 5 3 5 2 2 4 4 3 5 1 4 3 1 3 2 4 1
#> [4681] 1 3 5 3 2 4 2 1 2 3 5 1 2 4 2 2 5 2 2 2 2 2 2 3 2 3 2 2 5 3 3 1 5 1 3 2
#> [4717] 2 5 5 3 2 2 5 1 1 2 2 3 2 4 2 1 2 5 1 3 3 2 2 2 1 2 5 4 2 5 3 2 5 2 2 3
#> [4753] 2 5 5 2 5 3 3 5 5 3 2 5 2 3 2 5 1 3 2 4 3 3 1 2 4 3 3 2 2 2 2 3 2 2 5 2
#> [4789] 2 4 4 5 2 3 5 1 2 4 1 1 2 2 2 1 1 5 2 2 5 4 5 2 4 1 5 4 4 5 2 1 4 1 1 3
#> [4825] 2 4 3 5 1 2 3 2 3 1 2 1 4 2 1 3 2 2 2 4 5 4 1 5 3 4 2 5 2 2 1 2 1 2 2 2
#> [4861] 1 5 3 2 5 2 3 2 3 3 5 1 2 5 2 3 1 3 2 5 5 5 2 3 3 4 2 5 1 2 2 2 2 2 5 3
#> [4897] 5 2 5 2 1 2 5 5 2 5 2 2 2 1 2 3 5 2 1 2 5 3 3 2 2 2 2 2 5 2 3 3 4 3 3 5
#> [4933] 1 3 2 2 2 3 3 3 2 3 3 3 2 5 5 3 2 3 3 5 2 2 1 4 2 2 4 2 1 2 3 1 3 3 5 5
#> [4969] 2 3 2 2 5 5 2 4 3 3 5 2 5 5 3 1 2 2 3 3 2 5 2 5 1 3 2 2 2 2 4 2 4 1 5 2
#> [5005] 3 2 5 3 1 2 5 2 3 4 2 1 3 2 2 2 2 1 3 3 3 2 2 1 1 4 4 2 2 1 2 5 3 2 4 3
#> [5041] 2 2 2 2 5 4 2 4 4 2 2 4 2 4 2 4 5 2 2 5 3 5 5 3 2 3 3 5 1 3 2 3 1 3 3 2
#> [5077] 2 1 2 5 2 1 2 4 4 2 2 4 3 3 5 1 5 2 4 2 4 3 5 2 1 5 3 3 2 2 2 2 4 3 2 1
#> [5113] 5 1 3 3 4 2 1 2 1 2 5 2 2 1 3 2 2 2 3 2 2 2 5 2 5 3 3 2 2 3 5 1 2 5 2 4
#> [5149] 4 2 2 2 3 2 2 4 1 1 3 5 2 2 5 2 3 4 2 2 2 2 5 2 2 1 1 5 2 1 2 4 1 3 5 2
#> [5185] 3 5 2 3 2 1 5 1 3 1 2 5 2 1 2 3 4 3 3 2 1 2 5 2 2 5 2 1 5 4 2 4 3 4 2 1
#> [5221] 1 5 2 1 2 3 1 2 2 1 1 3 2 3 3 2 4 2 4 2 2 2 2 2 3 2 2 2 1 1 3 3 5 3 2 5
#> [5257] 2 4 2 5 1 2 1 4 1 2 3 2 5 2 3 1 2 3 1 4 5 2 2 4 1 3 1 1 2 2 2 3 2 3 2 3
#> [5293] 2 2 1 2 1 1 5 2 4 2 1 3 2 1 5 2 2 3 3 4 5 2 5 2 4 3 4 2 3 1 3 3 2 3 2 2
#> [5329] 1 2 3 3 1 3 2 2 2 1 4 1 4 1 2 4 3 5 5 5 2 2 2 1 3 2 2 1 1 1 2 2 5 3 2 3
#> [5365] 1 2 2 2 2 5 5 1 1 2 4 1 3 1 2 1 4 3 3 3 5 3 4 2 2 2 2 5 5 3 2 1 4 2 4 3
#> [5401] 4 5 5 2 5 2 2 2 1 4 5 4 1 3 1 4 5 1 2 2 3 5 5 5 3 5 1 4 1 2 2 4 1 2 2 2
#> [5437] 1 2 3 2 2 2 5 4 1 5 2 4 2 3 3 1 1 2 2 2 3 5 3 5 1 2 3 1 5 1 2 3 2 2 2 1
#> [5473] 3 2 2 4 1 3 2 1 1 4 5 1 5 4 2 3 5 4 2 5 5 4 2 4 5 2 3 2 4 3 4 3 5 5 3 2
#> [5509] 3 1 2 2 5 3 2 2 4 2 5 5 2 2 2 2 2 3 2 3 4 2 2 2 2 2 3 3 5 3 2 5 3 3 3 3
#> [5545] 2 2 3 2 3 5 4 1 1 3 5 2 2 5 2 2 5 1 2 5 5 3 2 3 1 2 3 2 3 2 1 2 2 3 2 1
#> [5581] 2 2 1 2 3 2 3 5 4 1 3 2 4 5 2 4 2 2 3 1 5 3 4 2 3 1 4 2 3 5 2 3 2 2 2 2
#> [5617] 4 5 3 2 2 4 2 2 2 1 3 1 3 1 4 5 2 3 3 2 5 5 3 4 5 1 4 2 5 5 5 3 3 4 4 2
#> [5653] 3 2 2 4 2 2 2 5 2 4 2 2 4 4 3 2 2 1 3 4 3 2 2 5 2 5 2 1 1 3 1 1 1 3 1 2
#> [5689] 4 3 5 4 4 4 3 4 2 2 2 1 3 5 3 2 2 5 1 4 2 3 1 3 4 2 2 2 5 2 2 1 3 3 5 3
#> [5725] 2 3 4 2 5 5 2 2 2 2 4 4 2 3 1 4 2 2 2 3 1 5 5 1 2 3 5 2 2 5 1 3 3 5 2 1
#> [5761] 3 2 1 2 2 4 2 2 2 1 2 2 3 3 3 2 2 5 2 2 2 5 1 3 3 2 4 2 2 4 3 3 5 3 3 3
#> [5797] 5 2 3 2 1 5 4 1 2 1 2 1 5 1 4 1 2 2 2 2 3 2 4 4 5 2 2 1 2 2 2 2 4 2 4 3
#> [5833] 2 2 3 3 2 5 2 4 2 2 2 2 2 5 2 2 3 1 2 2 5 2 3 2 1 2 2 2 2 1 1 2 2 3 4 2
#> [5869] 3 1 4 2 2 1 2 2 4 1 5 1 5 5 2 3 4 4 5 5 3 5 4 2 2 3 1 2 4 1 2 5 4 2 2 2
#> [5905] 1 4 2 5 5 3 2 1 3 2 2 2 3 2 3 2 3 2 5 2 1 2 1 2 1 4 2 3 2 5 2 2 3 2 2 2
#> [5941] 5 5 1 2 2 3 1 3 4 3 1 1 2 2 5 1 3 1 5 3 2 2 2 2 3 5 1 2 2 3 2 2 2 1 4 3
#> [5977] 5 2 4 2 1 2 5 2 1 4 5 4 2 3 2 2 2 2 4 2 5 2 2 1 5 3 4 5 4 2 2 2 2 3 2 1
#> [6013] 5 3 1 3 1 2 5 2 3 4 3 2 2 3 3 1 2 3 3 1 3 2 2 3 5 2 2 5 4 2 1 2 1 4 2 2
#> [6049] 2 4 5 3 2 2 5 5 2 1 1 5 3 2 4 2 3 1 5 2 2 3 1 1 3 5 1 5 3 2 5 5 1 2 5 4
#> [6085] 2 2 3 5 3 3 2 3 3 3 1 2 3 2 4 2 1 2 1 2 3 4 2 2 2 5 3 3 1 3 1 2 2 3 2 5
#> [6121] 2 3 2 3 3 2 4 3 5 2 1 2 3 4 2 3 2 2 2 3 1 2 2 3 4 4 2 2 1 3 2 4 3 1 2 1
#> [6157] 3 5 1 2 4 1 3 2 2 2 1 4 2 2 5 2 2 5 2 2 4 5 1 4 3 4 5 3 5 3 1 2 3 3 5 2
#> [6193] 3 3 5 2 4 3 2 4 5 3 3 2 3 2 3 1 2 2 2 4 3 3 4 3 1 2 2 5 2 4 1 2 2 2 3 5
#> [6229] 4 3 5 3 3 3 2 2 2 1 5 1 1 1 2 2 4 3 2 4 4 2 1 2 2 2 1 3 2 2 4 4 3 4 5 2
#> [6265] 1 4 1 1 2 2 1 2 2 5 2 1 2 2 3 2 3 2 3 2 5 3 3 1 5 1 2 2 3 2 2 2 4 3 2 3
#> [6301] 5 5 1 1 2 1 2 5 4 1 2 1 2 5 2 2 5 2 5 2 1 4 2 1 2 4 1 4 2 2 2 2 2 2 3 3
#> [6337] 5 2 2 4 2 4 2 5 5 5 3 1 2 1 4 1 4 3 2 2 2 2 3 4 2 1 5 2 2 5 4 2 2 3 2 2
#> [6373] 4 5 3 3 3 3 4 1 1 1 2 1 4 1 5 1 2 2 2 4 1 2 1 1 2 3 2 2 5 4 5 2 1 3 3 2
#> [6409] 2 2 2 3 5 3 2 3 3 2 2 1 2 5 2 2 3 2 3 5 2 2 4 5 5 3 3 3 5 2 2 2 3 4 3 3
#> [6445] 1 4 5 3 5 2 3 5 3 2 4 2 4 1 1 3 2 2 2 2 5 5 2 2 3 1 1 2 2 2 2 3 1 3 2 3
#> [6481] 1 4 2 2 2 2 2 5 2 2 3 2 1 4 3 3 5 2 4 3 2 3 3 3 2 1 1 2 2 1 2 1 3 4 5 2
#> [6517] 1 2 2 2 3 3 2 2 3 4 2 3 2 2 3 4 5 2 3 3 2 2 5 5 2 2 3 1 3 2 2 1 3 2 2 1
#> [6553] 4 3 4 2 4 3 3 3 4 2 2 1 5 1 2 2 2 5 3 2 5 3 4 2 5 1 1 3 2 1 5 2 2 2 1 1
#> [6589] 1 2 4 5 2 2 2 2 3 2 2 5 2 2 2 2 2 1 3 2 2 5 1 2 2 2 5 1 5 2 1 5 2 4 3 5
#> [6625] 3 5 2 5 1 2 5 5 2 4 2 2 1 3 2 2 1 1 2 2 4 3 3 2 2 3 2 2 2 5 1 2 2 2 2 1
#> [6661] 4 5 3 4 5 1 1 3 3 1 1 2 3 2 5 2 5 1 3 4 2 5 1 2 5 4 5 3 5 1 2 1 2 4 1 1
#> [6697] 4 2 2 1 2 2 5 3 4 5 3 4 2 5 2 2 2 5 5 3 1 2 2 3 5 2 3 1 4 5 1 2 2 3 2 3
#> [6733] 5 1 2 2 5 2 2 5 1 3 2 2 4 3 4 2 1 4 5 2 2 1 5 3 2 2 4 5 2 4 3 5 1 4 2 3
#> [6769] 5 2 3 2 2 3 2 4 5 4 1 3 2 4 3 4 1 1 2 5 3 1 1 3 3 2 2 2 2 2 3 1 2 2 2 4
#> [6805] 4 2 1 5 2 3 4 5 2 2 2 2 1 2 2 2 2 3 1 2 1 1 3 3 2 3 1 5 3 2 3 2 2 5 3 4
#> [6841] 1 3 2 5 1 5 2 2 2 2 5 3 3 2 5 2 2 5 4 4 4 2 5 4 2 3 2 2 5 2 1 2 2 5 5 4
#> [6877] 5 2 2 3 2 5 2 3 2 2 4 5 3 2 3 2 3 3 2 5 1 2 2 4 2 3 3 2 3 3 2 2 4 1 1 2
#> [6913] 5 2 2 4 4 2 5 1 5 3 1 2 4 3 5 3 5 2 3 2 5 4 5 2 5 4 2 5 1 5 2 2 2 5 2 3
#> [6949] 4 4 2 2 3 2 1 3 2 3 2 2 3 4 2 1 2 5 2 2 2 1 5 5 2 5 4 5 3 3 2 2 1 4 4 2
#> [6985] 1 2 3 1 2 1 2 1 2 2 2 2 1 2 2 4 4 2 2 3 2 1 2 2 1 2 2 2 2 5 2 4 3 5 5 3
#> [7021] 1 1 3 2 3 2 4 1 3 2 5 2 1 3 3 3 1 2 3 3 2 5 2 2 2 5 3 4 2 3 5 3 4 5 5 2
#> [7057] 2 4 5 2 3 5 2 4 2 2 1 1 5 3 3 2 2 3 2 5 5 5 3 1 1 1 2 2 4 3 2 2 4 2 3 2
#> [7093] 2 5 2 4 5 3 2 4 2 2 3 5 3 2 2 5 5 1 4 2 4 2 3 1 5 2 5 3 2 3 3 1 2 1 2 1
#> [7129] 1 3 2 1 2 2 2 5 1 5 2 1 5 4 2 3 3 1 4 2 2 4 2 5 2 5 3 1 3 1 5 1 3 2 3 1
#> [7165] 4 2 5 3 1 2 1 2 5 4 3 5 4 3 5 2 2 2 4 5 5 2 3 1 1 2 2 2 5 5 2 3 2 3 4 2
#> [7201] 4 2 5 5 2 2 2 5 2 1 2 2 1 2 2 5 2 2 2 2 5 4 4 3 1 2 3 4 2 5 2 5 5 2 5 2
#> [7237] 2 1 2 2 4 2 1 3 2 2 2 1 4 2 5 2 5 5 3 2 5 5 2 4 2 2 3 5 1 1 2 5 2 3 1 2
#> [7273] 4 3 2 5 2 3 5 3 2 1 3 3 1 1 2 3 1 2 4 4 1 1 5 5 4 3 3 2 2 2 4 2 3 3 3 2
#> [7309] 3 3 2 2 2 5 2 1 3 1 5 4 2 2 3 3 5 2 2 3 3 3 3 2 2 5 2 4 2 4 3 1 3 1 3 3
#> [7345] 1 3 2 3 2 5 3 2 4 3 2 2 2 4 4 3 2 1 3 2 1 1 4 3 5 3 3 5 1 5 2 3 5 2 1 4
#> [7381] 5 1 3 2 4 2 1 2 2 2 3 2 2 2 1 2 2 4 3 4 5 5 5 5 5 2 3 5 2 5 1 5 5 1 3 4
#> [7417] 5 5 3 1 5 1 3 2 2 3 2 2 2 4 4 3 4 4 2 3 2 2 4 5 2 5 2 2 3 2 1 2 5 1 2 2
#> [7453] 5 1 4 3 2 3 4 1 2 5 5 2 3 1 2 2 3 3 4 5 3 3 3 2 5 5 3 5 3 2 2 5 5 2 3 5
#> [7489] 3 2 4 2 2 3 3 5 3 5 2 2 5 3 1 2 3 2 3 1 2 4 5 3 2 2 3 5 5 2 2 4 4 5 3 3
#> [7525] 5 2 1 4 2 2 2 3 2 3 5 3 4 1 5 1 3 4 2 3 3 2 5 2 2 2 2 2 3 5 2 2 2 2 1 3
#> [7561] 3 4 5 1 2 2 2 1 3 5 3 5 2 2 3 4 3 1 5 2 4 2 4 2 2 2 1 5 5 2 3 2 3 1 1 2
#> [7597] 4 4 2 4 2 5 4 1 5 2 1 3 5 3 2 2 2 2 5 2 2 2 3 5 2 2 3 3 4 1 1 1 2 3 3 5
#> [7633] 2 2 3 5 3 1 3 2 3 1 2 5 2 1 5 3 3 4 3 5 2 2 4 1 2 3 4 2 2 3 2 1 5 5 5 4
#> [7669] 4 5 2 3 3 2 5 3 2 4 5 5 2 3 3 3 2 5 4 2 5 2 3 2 4 3 5 2 1 2 5 2 3 5 4 4
#> [7705] 2 3 1 5 4 2 4 1 3 2 1 3 4 3 3 5 2 3 3 3 2 2 2 2 2 1 3 3 2 1 2 4 5 5 2 2
#> [7741] 3 1 1 2 2 3 3 4 3 2 2 1 1 1 2 3 1 3 2 1 2 2 2 2 2 1 2 2 1 1 5 1 5 2 2 3
#> [7777] 1 3 2 5 3 2 2 4 5 4 5 3 4 2 2 3 3 4 3 3 2 5 2 3 1 2 2 2 5 2 4 4 2 3 3 2
#> [7813] 2 3 1 5 2 2 1 5 2 5 2 1 4 1 2 5 1 2 3 2 2 5 3 5 5 5 1 5 2 2 4 3 2 1 3 2
#> [7849] 2 2 2 2 3 3 1 3 3 2 3 2 5 3 3 1 5 5 2 4 1 2 2 1 2 2 2 5 4 5 1 2 4 5 5 5
#> [7885] 5 2 4 2 1 3 2 2 3 1 1 3 5 2 4 2 5 2 5 2 2 3 2 5 1 2 3 2 5 5 3 5 2 3 4 2
#> [7921] 2 4 3 1 3 3 3 2 2 2 3 2 1 5 3 3 2 2 2 2 2 4 4 2 2 2 1 3 3 1 5 2 2 2 2 2
#> [7957] 3 1 3 3 2 3 2 4 1 2 2 2 2 1 4 5 2 2 3 2 4 4 2 2 3 3 1 3 3 2 5 2 1 3 2 3
#> [7993] 2 2 3 2 2 1 2 3 2 4 2 1 4 2 2 2 2 2 2 5 2 2 3 1 2 4 3 2 2 2 2 2 1 2 2 2
#> [8029] 2 3 3 1 5 3 2 5 3 3 2 5 2 2 1 4 4 2 2 4 2 3 1 4 2 1 3 1 5 1 2 1 2 2 2 3
#> [8065] 3 3 5 4 3 1 2 4 1 3 2 2 2 5 2 2 4 5 2 2 2 5 5 3 3 3 3 2 1 2 3 3 2 3 4 5
#> [8101] 2 2 5 1 5 3 1 1 2 1 2 5 1 3 1 2 4 2 4 5 2 2 2 4 2 1 1 1 2 2 2 1 3 1 2 3
#> [8137] 5 3 2 2 4 5 3 5 5 3 2 2 5 5 1 4 5 3 3 3 2 3 2 3 3 2 4 1 2 5 4 2 5 1 5 4
#> [8173] 1 2 2 3 5 2 2 4 1 5 1 1 2 3 3 5 3 1 4 1 3 2 3 5 2 2 4 2 5 5 3 4 5 2 1 2
#> [8209] 2 5 1 1 1 2 1 5 3 2 2 2 2 3 2 4 1 2 4 2 4 2 5 2 1 2 2 3 4 1 2 2 3 2 5 1
#> [8245] 1 2 3 2 5 2 2 2 4 5 2 3 1 2 1 5 3 4 3 1 3 2 4 2 2 2 2 5 1 2 2 5 3 2 2 5
#> [8281] 3 4 3 5 3 5 2 4 3 5 3 2 2 2 2 3 2 3 3 3 4 5 2 3 2 5 2 2 2 1 5 3 3 2 4 5
#> [8317] 4 2 3 1 3 5 4 3 5 4 2 2 3 5 4 2 2 2 3 1 5 5 3 2 2 5 5 5 5 3 2 2 2 3 2 2
#> [8353] 4 4 5 2 4 3 2 1 2 2 1 5 3 1 2 2 3 1 3 2 3 5 3 2 1 1 2 5 5 1 5 3 2 2 2 2
#> [8389] 5 2 2 5 4 4 2 2 4 3 1 4 5 3 5 3 2 2 2 5 5 2 2 2 2 2 2 5 3 2 1 5 4 4 2 2
#> [8425] 3 4 3 4 3 2 3 2 4 1 2 2 2 2 2 2 4 2 2 5 1 2 2 3 2 3 4 5 3 3 2 1 3 2 4 3
#> [8461] 4 2 3 2 2 2 1 3 5 2 2 2 2 5 2 4 1 3 2 2 4 3 2 3 2 5 3 1 3 1 2 5 2 1 2 5
#> [8497] 2 5 3 4 5 1 1 2 2 5 2 1 3 2 2 4 3 2 1 2 2 2 5 3 2 2 2 2 3 5 1 3 1 3 4 1
#> [8533] 3 3 2 3 2 1 2 1 2 2 2 5 3 1 2 5 3 5 5 4 5 3 1 4 1 2 2 5 2 2 1 3 4 5 2 1
#> [8569] 5 4 2 2 5 2 3 2 3 2 5 3 4 2 3 2 4 2 4 3 5 4 5 4 2 3 4 4 3 2 2 5 2 1 3 2
#> [8605] 4 5 2 4 1 4 2 1 3 2 2 3 5 5 1 3 3 2 3 3 4 2 4 4 2 2 2 2 5 2 4 2 2 2 1 4
#> [8641] 3 2 2 3 3 3 4 3 2 3 2 3 1 2 2 4 2 2 3 3 2 3 5 3 1 5 2 2 4 3 2 4 4 2 3 3
#> [8677] 1 2 3 1 3 5 3 5 1 3 3 4 2 3 3 2 2 3 4 3 1 1 5 5 2 4 2 5 5 5 5 2 3 2 5 3
#> [8713] 2 1 1 3 5 4 5 3 3 3 1 1 4 2 3 1 2 2 3 5 3 2 1 5 1 1 3 3 2 3 5 4 2 3 3 5
#> [8749] 2 2 3 3 2 2 2 1 2 1 5 5 2 1 4 2 1 5 3 2 2 2 4 3 3 5 2 5 1 1 3 3 2 2 2 1
#> [8785] 2 3 2 3 1 3 1 2 2 1 5 1 1 2 1 3 2 2 1 1 5 3 1 2 3 3 1 1 1 2 5 3 2 1 2 2
#> [8821] 2 2 2 1 2 2 5 1 1 2 4 5 3 2 1 5 3 2 3 3 5 5 5 3 2 2 2 3 3 2 2 5 4 2 2 2
#> [8857] 3 5 4 1 1 3 3 3 3 2 1 2 1 2 5 2 1 2 5 1 5 2 5 5 2 2 2 1 5 2 5 2 5 1 3 5
#> [8893] 2 2 2 2 2 5 2 2 5 2 3 4 2 2 1 2 3 2 2 1 3 5 2 3 5 1 3 2 1 3 3 3 3 4 1 2
#> [8929] 3 5 4 3 5 3 2 4 2 1 1 2 3 1 2 2 5 3 3 3 4 5 1 2 2 2 5 1 2 1 5 4 2 1 4 4
#> [8965] 3 2 3 5 5 1 5 3 5 2 2 4 4 5 2 2 2 1 3 5 2 2 2 2 5 3 4 3 2 1 1 2 5 2 3 5
#> [9001] 5 2 2 3 2 2 4 3 5 3 2 2 2 4 3 5 3 1 1 3 4 2 1 2 2 4 2 3 2 4 4 5 2 4 3 3
#> [9037] 1 2 3 2 2 4 1 2 5 2 1 3 5 2 3 1 2 2 4 5 3 2 3 5 4 5 4 2 4 1 1 5 2 4 3 1
#> [9073] 3 2 2 2 2 2 4 5 4 3 2 3 4 5 3 2 1 5 2 1 2 4 3 2 3 1 4 1 2 4 5 4 3 3 2 3
#> [9109] 2 2 2 5 5 2 5 2 3 2 2 2 3 4 4 2 2 2 2 3 2 4 3 2 3 2 2 4 2 2 5 5 3 2 5 2
#> [9145] 5 5 2 3 2 3 2 1 3 3 4 4 2 2 2 2 3 1 3 2 4 4 3 1 2 2 2 1 2 2 2 3 3 3 4 4
#> [9181] 3 4 3 2 1 2 3 3 3 3 3 2 1 3 5 5 3 2 5 5 3 1 2 4 2 5 3 4 4 5 3 3 3 2 2 4
#> [9217] 5 1 2 1 1 1 5 2 2 1 4 3 2 3 3 2 1 1 5 4 5 3 3 2 2 2 4 2 2 3 4 2 2 1 5 5
#> [9253] 2 5 2 2 3 2 2 2 2 5 2 2 1 1 1 2 2 5 3 2 2 1 5 4 2 2 2 5 4 3 2 1 2 3 3 2
#> [9289] 3 3 2 2 2 2 5 1 2 5 3 1 2 3 3 2 2 3 2 2 2 1 1 2 3 1 5 4 1 3 2 3 1 5 3 2
#> [9325] 4 2 1 2 3 2 3 4 5 4 2 2 3 2 4 2 3 4 2 2 2 1 2 2 2 5 2 2 1 2 2 3 5 5 2 2
#> [9361] 3 3 5 3 4 3 5 2 1 2 5 1 5 3 4 4 2 2 2 2 2 2 3 3 3 2 2 2 5 5 2 1 5 3 2 1
#> [9397] 4 2 4 1 1 2 2 2 5 5 5 3 4 5 5 2 3 2 2 3 2 1 2 5 2 2 1 5 4 2 5 2 2 5 5 2
#> [9433] 4 2 2 2 2 5 2 3 3 4 1 3 5 3 5 3 2 2 2 3 2 2 3 1 3 5 3 1 3 5 4 2 5 4 4 1
#> [9469] 1 5 4 4 1 2 3 5 5 3 5 2 3 2 5 3 1 2 3 2 2 3 1 5 2 2 2 2 3 2 2 5 2 1 2 3
#> [9505] 3 4 3 2 5 4 1 1 2 5 2 3 2 2 1 3 2 3 2 2 3 5 2 4 2 4 1 2 2 2 1 2 2 4 2 5
#> [9541] 2 3 1 4 2 3 5 2 2 2 2 4 1 2 3 2 3 5 4 3 2 4 2 4 2 2 2 5 5 3 2 2 2 2 2 3
#> [9577] 2 3 1 1 1 2 3 1 2 2 1 1 1 2 1 3 3 4 1 1 4 4 4 3 2 3 4 3 2 3 2 2 4 2 2 1
#> [9613] 4 5 4 1 2 3 4 4 2 1 3 2 4 5 2 4 3 2 2 2 1 1 4 5 2 2 3 5 2 2 2 2 4 3 3 5
#> [9649] 3 2 2 3 2 4 5 3 2 1 2 1 2 4 3 3 1 4 3 1 5 3 1 3 5 3 2 2 2 2 4 3 1 2 5 3
#> [9685] 4 4 5 5 2 1 1 2 2 1 5 2 1 4 4 3 3 5 2 5 3 3 5 4 2 5 2 2 2 4 4 5 3 5 1 3
#> [9721] 3 2 2 1 2 5 3 3 3 2 1 2 2 5 5 5 3 3 3 4 2 3 2 3 4 3 2 2 1 2 5 2 2 5 3 3
#> [9757] 2 5 2 2 3 4 2 2 2 2 3 4 2 2 1 4 2 3 4 2 2 2 5 4 2 5 2 2 2 2 2 5 2 4 4 1
#> [9793] 5 4 3 2 4 2 3 1 1 2 2 2 3 4 3 2 3 5 3 3 2 2 2 3 2 5 3 5 2 2 4 3 3 3 3 3
#> [9829] 3 1 1 3 2 5 3 1 2 2 5 2 2 1 2 1 1 3 3 3 2 2 1 4 2 2 2 3 4 5 2 4 2 3 2 5
#> [9865] 1 5 2 5 5 4 5 3 4 2 2 3 4 1 2 4 3 5 5 2 2 2 1 4 2 2 2 1 5 3 5 2 5 2 1 4
#> [9901] 2 3 2 2 1 2 4 3 3 4 3 3 3 2 4 3 2 1 3 3 2 3 2 3 2 3 2 5 5 3 3 3 3 2 3 4
#> [9937] 1 4 1 4 4 2 4 2 2 2 2 2 4 5 2 2 3 2 1 2 2 3 1 4 3 3 2 2 2 5 2 2 2 2 5 5
#> [9973] 5 2 2 3 3 5 2 5 5 1 1 2 3 1 1 1 1 2 2 3 2 2 3 5 2 5 5 5 5 4 2 1 1 2 2 3
#> [10009] 2 1 5 3 3 2 2 1 4 4 5 5 5 3 1 3 3 2 5 2 2 2 4 5 3 3 4 1 2 5 5 1 2 2 1 2
#> [10045] 2 5 2 2 2 3 2 2 1 2 5 3 5 3 4 3 5 5 1 2 4 1 2 1 2 2 2 2 1 1 3 3 3 1 3 3
#> [10081] 5 3 1 4 1 4 3 2 3 3 2 3 2 3 1 2 2 2 4 2 5 3 3 2 4 3 4 4 5 2 3 2 5 1 2 2
#> [10117] 4 2 2 3 5 2 2 1 4 1 2 5 3 4 2 1 2 2 3 5 3 4 3 1 3 5 1 2 2 4 1 1 2 5 4 2
#> [10153] 2 1 2 4 3 1 4 5 3 5 2 1 5 1 1 3 2 4 2 1 2 2 5 3 2 2 2 4 3 5 3 5 1 5 3 2
#> [10189] 4 2 3 2 4 2 3 3 3 5 3 5 3 5 4 4 5 2 4 1 2 3 3 5 3 1 3 2 2 5 3 2 5 5 1 5
#> [10225] 2 2 2 5 5 3 2 3 5 4 2 5 3 2 3 3 4 3 4 3 5 2 2 2 1 2 1 3 3 2 5 3 3 2 3 4
#> [10261] 3 2 3 2 2 4 2 2 3 2 5 1 1 3 2 2 3 5 2 3 2 5 4 5 2 3 1 2 4 2 2 5 2 3 2 4
#> [10297] 4 5 3 5 2 3 1 1 2 4 5 5 2 3 1 5 3 4 3 1 2 2 3 2 4 2 1 3 2 2 3 2 4 2 2 4
#> [10333] 1 3 2 3 2 3 1 2 3 2 1 5 4 2 2 2 2 3 2 3 2 4 2 1 3 3 2 2 2 1 2 2 2 3 2 5
#> [10369] 2 5 5 5 2 5 4 2 2 3 2 1 5 2 2 4 4 2 2 3 2 2 2 2 2 2 5 4 2 1 3 5 3 1 4 3
#> [10405] 3 5 1 4 5 2 3 3 2 2 3 1 4 2 5 1 1 1 3 3 5 5 3 2 1 4 2 5 4 4 2 4 2 5 4 1
#> [10441] 2 2 3 5 2 5 2 3 1 3 2 2 3 5 1 2 2 1 2 2 3 1 5 3 2 2 2 3 2 5 3 2 2 2 2 5
#> [10477] 5 5 4 3 3 4 2 5 2 5 2 3 5 4 1 3 5 2 4 3 1 2 3 3 1 3 4 1 2 2 1 2 2 2 2 2
#> [10513] 2 4 2 1 2 3 2 1 2 3 4 5 4 2 4 3 2 5 3 1 2 2 2 5 3 1 3 1 5 3 5 3 5 2 2 3
#> [10549] 5 2 3 2 4 1 4 5 2 3 2 4 2 3 2 2 3 3 2 2 3 2 2 5 4 3 1 3 3 2 2 1 2 2 4 2
#> [10585] 4 3 2 2 2 4 2 5 2 2 1 2 2 3 4 1 2 2 3 3 3 5 5 5 1 4 2 2 1 3 2 4 5 5 3 2
#> [10621] 2 3 2 3 3 5 3 3 2 5 4 3 3 4 5 2 4 3 5 2 5 1 3 2 5 3 1 2 5 4 5 2 3 3 3 4
#> [10657] 3 1 4 2 3 1 2 3 5 3 1 3 4 2 4 2 2 4 5 1 4 2 1 1 1 3 4 2 3 4 2 2 3 4 2 5
#> [10693] 4 5 2 2 4 3 1 2 2 3 3 2 3 5 2 4 3 3 2 5 5 2 2 4 2 5 2 1 1 5 1 4 3 5 2 2
#> [10729] 4 2 1 2 3 2 2 1 5 3 4 2 2 2 2 1 3 2 3 5 2 4 3 5 2 3 2 1 1 1 5 2 3 3 5 5
#> [10765] 2 2 2 2 3 3 2 4 4 3 5 1 2 5 2 2 2 3 4 3 1 2 3 1 3 1 3 4 1 1 2 1 2 4 2 5
#> [10801] 2 2 2 2 5 4 3 5 2 3 2 4 5 4 3 2 3 4 5 3 1 5 5 2 2 3 1 5 2 2 4 5 2 2 3 2
#> [10837] 3 3 2 1 5 1 5 2 2 2 2 4 4 5 3 2 5 5 5 5 2 2 3 5 2 2 2 2 2 2 2 2 1 2 4 1
#> [10873] 5 3 2 4 2 2 2 2 1 5 2 2 2 3 3 2 4 3 2 3 1 2 3 2 2 1 3 3 1 1 5 5 1 5 2 2
#> [10909] 4 1 3 5 3 2 2 3 1 3 2 3 1 5 1 2 2 1 3 2 2 5 2 3 3 5 5 2 4 3 3 5 1 2 5 3
#> [10945] 5 3 3 4 3 5 5 2 2 5 2 4 2 3 3 3 4 3 2 2 2 5 2 3 3 1 2 1 3 4 1 2 3 2 4 5
#> [10981] 1 3 3 4 3 4 2 2 3 5 3 4 3 5 5 1 5 4 3 3 2 4 2 2 5 2 3 2 3 2 5 2 2 3 2 4
#> [11017] 2 5 1 5 5 2 2 1 3 2 4 2 2 2 1 3 3 1 3 3 2 3 4 2 3 1 2 2 3 5 4 2 2 1 2 2
#> [11053] 2 5 4 2 3 5 5 3 2 4 5 1 3 4 1 1 2 2 3 3 1 3 3 5 5 4 3 2 2 2 2 2 4 5 2 2
#> [11089] 2 2 2 4 5 5 3 3 2 2 2 3 5 1 3 5 1 5 4 2 1 5 5 1 3 2 2 2 3 3 2 3 2 3 1 2
#> [11125] 2 1 5 5 2 2 4 3 4 3 2 2 1 2 5 1 2 4 2 4 1 4 4 2 2 4 5 1 2 2 3 5 2 4 2 5
#> [11161] 2 4 2 5 3 1 5 4 5 1 2 4 3 4 4 5 3 2 2 2 2 3 2 5 2 1 5 3 3 2 5 4 5 2 5 3
#> [11197] 2 3 2 2 4 5 5 3 3 1 2 3 3 2 3 2 3 2 2 2 2 2 2 4 3 2 3 3 3 2 2 4 3 5 3 2
#> [11233] 3 3 3 2 5 3 5 2 2 2 1 2 1 5 2 5 5 3 2 4 2 2 1 3 3 2 2 2 3 4 3 2 4 1 2 1
#> [11269] 4 5 2 2 3 2 2 3 1 4 4 4 5 4 3 2 5 5 5 4 5 2 3 2 2 4 2 5 2 5 2 1 1 5 5 2
#> [11305] 3 5 3 5 3 1 1 2 2 3 2 5 2 4 5 5 5 2 3 2 2 5 1 5 2 2 3 1 5 4 2 3 5 3 4 3
#> [11341] 1 4 3 3 1 3 2 2 3 2 2 2 2 2 2 4 2 5 1 2 5 2 2 4 2 3 4 4 1 5 2 5 3 5 5 2
#> [11377] 3 1 2 1 3 2 3 3 2 3 5 2 1 1 4 2 3 5 2 2 5 2 4 2 2 5 4 2 1 2 2 2 3 5 1 2
#> [11413] 2 1 3 5 3 4 5 5 1 3 2 2 3 3 2 2 3 2 4 5 5 2 3 3 3 3 3 2 2 3 1 3 2 2 5 3
#> [11449] 2 2 2 2 2 3 2 5 2 3 4 4 2 5 2 3 4 5 3 1 5 2 3 3 4 2 2 1 2 5 5 4 4 3 4 3
#> [11485] 4 4 5 4 2 2 3 5 2 3 3 5 2 2 2 4 5 2 5 3 5 1 2 1 2 2 1 5 1 2 3 3 2 4 2 1
#> [11521] 2 2 3 5 5 5 3 2 5 1 5 3 5 5 4 3 3 2 3 2 5 2 4 5 2 1 2 5 2 3 2 4 2 2 3 5
#> [11557] 3 2 2 1 2 2 1 5 2 4 2 3 3 1 5 5 3 5 3 1 2 3 5 2 5 2 4 2 2 4 2 5 3 2 5 2
#> [11593] 3 2 2 5 5 3 2 2 2 4 2 3 2 2 2 1 2 3 3 1 2 2 4 2 1 1 5 3 5 1 2 2 3 2 4 2
#> [11629] 1 3 2 2 1 2 4 2 2 2 3 2 2 2 3 3 3 4 1 4 3 1 3 5 2 2 2 4 4 1 3 5 1 2 1 3
#> [11665] 2 2 4 2 5 1 2 5 5 5 4 3 2 5 5 3 5 2 2 4 3 1 3 2 5 2 3 2 2 4 1 2 2 3 1 3
#> [11701] 4 2 2 2 4 3 2 2 2 2 3 2 2 4 2 5 5 4 5 4 5 4 4 4 1 4 2 3 5 3 3 4 5 3 5 5
#> [11737] 2 3 5 2 4 3 2 2 2 2 2 3 2 2 4 3 3 1 4 2 1 2 2 2 3 5 2 2 3 4 1 2 4 2 2 4
#> [11773] 2 2 3 2 1 2 2 2 3 3 3 2 4 2 3 3 1 3 3 3 4 3 2 2 1 3 3 5 2 3 5 2 5 1 3 2
#> [11809] 3 2 2 2 2 1 1 5 2 2 1 2 3 4 3 5 5 2 2 1 3 4 2 5 2 4 3 3 2 3 5 3 5 3 5 5
#> [11845] 5 5 4 5 2 4 2 2 5 4 3 5 5 1 2 2 3 3 5 5 2 2 2 1 2 4 2 3 5 1 2 2 3 2 2 2
#> [11881] 2 2 3 5 1 5 3 1 3 2 2 2 2 2 4 2 2 1 2 5 3 2 2 1 2 1 3 5 5 3 2 2 3 2 5 2
#> [11917] 2 2 1 2 3 5 2 2 5 5 1 4 3 3 2 2 3 2 3 2 2 1 2 1 5 2 5 5 5 2 2 5 2 3 2 2
#> [11953] 2 2 5 2 5 5 5 2 2 2 3 2 2 5 3 5 5 5 5 3 2 2 1 3 2 2 2 1 5 1 5 1 5 3 1 3
#> [11989] 5 3 5 2 2 1 3 5 2 2 1 3 2 2 5 2 2 3 1 3 2 5 2 3 2 4 2 5 1 4 2 3 3 2 2 2
#> [12025] 2 2 2 3 3 2 3 1 4 2 5 2 4 2 2 2 3 1 3 4 3 2 1 5 2 5 5 4 2 2 1 3 4 2 4 3
#> [12061] 1 5 3 1 5 2 2 4 4 3 2 1 4 3 5 1 2 3 4 5 5 2 2 2 2 5 1 4 3 5 1 2 5 2 1 2
#> [12097] 4 3 5 2 4 2 4 3 2 2 2 2 4 1 2 3 2 1 3 1 5 5 2 1 2 2 2 3 5 5 2 3 2 1 3 3
#> [12133] 3 3 2 2 2 3 1 2 2 5 5 4 1 2 2 1 2 1 1 2 2 2 3 5 2 1 3 1 4 3 3 2 4 3 4 3
#> [12169] 2 2 3 5 1 5 5 5 4 2 1 1 5 5 2 3 1 3 5 1 4 2 2 2 1 5 4 1 3 2 2 4 3 2 2 2
#> [12205] 5 2 5 3 3 2 3 3 3 1 2 3 3 1 5 4 2 5 5 4 2 2 4 1 4 4 3 2 3 2 4 5 5 1 3 2
#> [12241] 5 5 4 2 2 2 5 3 2 2 5 1 1 5 2 5 2 1 2 3 1 3 3 1 5 2 2 4 2 3 1 2 2 2 4 2
#> [12277] 2 5 2 5 2 3 1 1 5 3 4 3 5 2 5 2 3 2 2 2 2 5 2 4 3 1 2 2 4 2 2 5 4 3 4 2
#> [12313] 1 4 5 3 1 3 4 3 3 5 2 3 3 1 4 4 2 3 2 2 5 5 5 3 4 3 2 3 2 2 5 3 4 2 3 3
#> [12349] 4 2 5 3 3 2 5 3 1 3 2 5 1 5 5 1 2 3 2 2 3 2 2 1 2 1 3 3 2 4 2 2 3 1 3 5
#> [12385] 5 4 3 2 3 2 1 1 5 5 5 2 1 4 5 4 2 5 2 5 5 5 4 2 1 2 3 2 2 2 2 1 1 2 5 3
#> [12421] 5 2 5 3 1 2 3 5 2 2 2 1 3 2 3 3 4 2 2 3 2 1 1 2 5 5 3 5 3 2 5 2 4 4 5 5
#> [12457] 4 1 2 4 1 3 2 2 2 3 5 5 1 2 2 2 2 2 3 5 3 3 3 2 5 2 1 3 2 5 1 3 2 2 3 2
#> [12493] 3 2 2 2 4 2 3 5 4 4 5 3 2 4 5 2 1 2 5 5 3 2 2 2 3 4 2 2 3 3 3 5 2 3 2 2
#> [12529] 2 3 2 5 2 3 1 2 4 2 2 3 5 3 2 4 2 2 2 2 3 2 2 2 5 3 4 2 5 3 1 2 1 4 2 3
#> [12565] 4 2 3 4 5 4 3 3 2 3 2 4 5 1 5 4 2 1 2 1 3 5 3 4 3 5 4 1 2 1 2 1 2 2 4 2
#> [12601] 2 3 3 4 4 1 3 4 2 2 1 2 2 2 2 2 3 2 2 1 2 2 2 3 2 5 4 2 5 2 2 2 4 2 2 3
#> [12637] 2 5 1 4 2 2 3 5 1 2 2 2 1 1 5 5 3 3 2 2 5 3 2 1 3 3 2 2 5 2 1 3 2 5 2 5
#> [12673] 1 5 2 2 2 4 3 5 4 2 1 4 1 2 4 3 4 1 3 2 1 3 5 1 2 3 5 2 2 2 2 3 3 4 5 1
#> [12709] 1 5 3 2 2 3 3 5 2 3 5 2 3 1 3 3 2 5 2 5 1 5 3 2 2 1 5 2 2 5 5 2 2 4 4 2
#> [12745] 1 3 2 4 2 2 4 2 5 3 5 4 5 2 5 5 4 3 5 4 2 1 4 2 3 5 2 1 5 4 3 2 2 5 5 5
#> [12781] 2 1 5 2 2 3 2 5 2 5 3 2 5 2 1 3 3 2 2 2 1 3 2 4 2 5 2 1 4 5 5 3 3 5 4 3
#> [12817] 4 5 1 1 3 1 2 3 3 1 5 1 3 3 2 2 2 2 4 4 1 4 2 3 2 2 1 2 3 4 3 5 1 2 5 1
#> [12853] 1 1 3 5 2 4 5 1 2 2 5 2 1 1 1 2 3 5 1 2 3 5 1 5 4 4 2 1 3 2 1 5 2 2 2 4
#> [12889] 2 3 2 3 1 2 2 3 3 3 2 3 3 3 3 2 5 3 5 2 1 2 2 2 2 2 4 3 4 2 2 2 2 3 2 2
#> [12925] 3 2 5 3 2 2 5 3 2 5 3 2 2 4 5 5 2 5 1 4 2 1 2 1 3 2 2 3 2 2 2 4 2 2 3 5
#> [12961] 5 3 3 3 1 5 5 2 4 3 1 2 2 1 2 2 3 2 3 2 5 2 2 2 2 5 5 2 3 5 4 3 2 2 5 1
#> [12997] 3 5 2 1 3 3 1 3 2 2 2 2 2 5 2 3 5 3 5 2 2 5 1 5 3 3 2 5 2 2 3 2 2 2 4 2
#> [13033] 2 2 2 2 3 5 5 4 2 2 3 2 5 4 2 2 3 2 3 3 4 2 1 1 2 2 2 2 2 2 2 2 5 1 3 5
#> [13069] 1 3 1 3 5 1 2 2 3 2 5 2 4 1 3 2 3 4 2 3 5 2 1 4 1 2 4 2 2 5 2 2 2 1 2 5
#> [13105] 3 3 5 2 3 3 3 2 2 1 5 1 3 1 2 4 2 2 4 4 2 5 2 1 5 2 5 5 2 3 2 5 1 5 2 2
#> [13141] 5 1 3 5 5 5 4 2 1 2 4 4 5 2 2 3 5 5 2 5 5 5 1 3 4 4 1 2 2 2 5 2 3 2 5 3
#> [13177] 2 1 5 4 5 3 5 4 5 2 4 2 2 2 2 2 2 1 1 3 3 2 1 1 3 2 2 3 1 3 1 4 3 5 2 5
#> [13213] 2 5 2 1 5 3 5 4 3 2 3 5 2 3 2 1 3 2 4 2 4 4 4 1 4 2 3 2 1 4 5 3 5 2 1 3
#> [13249] 4 3 5 2 4 2 3 1 2 5 3 5 5 3 4 5 2 2 2 3 3 1 4 1 2 5 1 2 2 5 5 2 2 4 5 2
#> [13285] 4 3 5 1 1 1 1 2 2 1 2 5 5 4 2 1 2 2 5 2 4 5 5 2 2 2 5 3 3 3 1 3 3 1 1 2
#> [13321] 3 4 2 5 2 2 2 4 2 1 3 1 5 5 2 5 2 5 3 2 2 2 5 2 5 5 3 4 1 5 1 3 2 2 4 5
#> [13357] 2 3 1 1 5 2 4 5 5 3 5 5 4 2 4 4 4 4 2 3 1 2 2 4 3 2 2 2 2 2 5 2 5 5 3 5
#> [13393] 2 2 2 5 1 1 2 4 5 2 3 4 3 3 5 5 4 5 3 5 2 2 1 3 2 2 1 3 5 5 3 4 2 3 1 1
#> [13429] 2 2 2 4 5 2 5 2 2 2 2 3 2 4 2 2 2 1 1 4 2 2 3 2 1 2 1 4 3 5 3 5 3 2 5 3
#> [13465] 3 2 3 2 2 2 2 5 2 2 3 4 2 2 4 1 2 2 3 2 2 2 2 2 3 3 3 2 4 3 2 3 2 2 5 3
#> [13501] 2 5 2 5 2 2 4 5 5 5 2 2 2 4 2 2 5 3 2 4 3 2 2 2 4 4 3 5 2 2 3 3 1 3 2 2
#> [13537] 5 3 2 1 2 2 2 5 3 4 5 5 1 1 2 2 5 2 2 2 5 2 1 5 2 1 2 3 1 3 4 2 1 2 1 2
#> [13573] 5 4 2 1 2 5 3 2 5 4 2 3 2 4 2 2 3 3 2 2 2 5 5 3 3 5 3 2 2 3 5 2 3 1 5 5
#> [13609] 2 3 2 2 2 2 3 3 4 1 1 2 3 1 3 2 2 3 2 2 2 3 3 3 3 3 2 1 2 2 2 3 3 2 2 4
#> [13645] 5 2 5 2 2 3 5 5 1 1 4 3 2 4 2 2 2 2 2 5 3 2 5 2 1 5 2 2 2 2 1 2 2 2 2 4
#> [13681] 3 3 4 2 3 1 2 3 2 3 5 2 3 5 1 4 2 2 4 2 5 2 3 3 5 2 4 2 4 4 2 3 2 1 1 5
#> [13717] 3 2 2 1 3 4 3 4 3 2 2 5 3 2 2 3 2 4 2 2 2 3 3 4 2 2 3 3 5 1 1 2 2 4 4 5
#> [13753] 2 5 3 2 2 2 3 5 1 3 2 2 5 4 3 2 1 5 5 3 2 2 4 2 3 1 1 5 1 2 2 5 4 1 5 3
#> [13789] 2 2 2 3 2 3 2 1 1 2 2 2 2 2 5 5 2 2 2 3 1 5 3 5 3 2 2 2 4 3 1 2 2 1 1 2
#> [13825] 1 2 3 3 2 2 5 3 2 4 2 5 3 5 3 5 4 4 2 5 4 2 1 3 5 3 2 3 3 5 2 4 2 5 2 1
#> [13861] 2 1 2 1 3 1 4 3 3 5 2 3 2 2 4 5 2 2 1 3 3 2 4 5 2 2 3 5 4 2 3 2 2 2 2 5
#> [13897] 1 5 1 2 5 4 2 3 3 2 5 4 3 2 2 1 1 1 2 1 4 5 2 2 5 1 2 5 2 2 3 4 3 2 3 2
#> [13933] 3 3 1 2 2 3 1 5 5 3 5 3 2 2 3 3 1 2 2 2 2 2 2 2 3 4 1 3 5 2 1 5 3 3 3 2
#> [13969] 2 1 2 2 2 2 4 3 2 2 4 5 3 1 3 2 1 3 2 2 2 2 1 5 3 2 3 2 1 5 1 5 4 4 4 4
#> [14005] 2 4 2 4 5 2 5 4 1 3 2 4 1 5 3 2 1 2 2 5 4 4 3 3 4 5 2 3 3 2 2 1 3 1 2 3
#> [14041] 2 1 2 1 1 2 3 5 5 2 3 1 3 1 4 3 5 5 3 2 2 4 5 2 1 1 2 2 3 3 2 2 3 2 2 2
#> [14077] 2 3 2 2 5 5 5 5 4 2 3 3 2 5 2 2 4 1 2 2 1 2 2 1 3 2 3 3 4 2 2 2 3 4 5 3
#> [14113] 4 2 2 2 3 2 1 3 2 3 3 3 2 2 2 5 5 3 4 3 1 2 2 5 2 1 5 2 1 3 2 2 5 5 5 1
#> [14149] 3 5 5 1 2 2 2 5 4 3 2 1 2 2 1 3 1 2 2 5 4 3 2 3 1 2 3 4 5 1 2 2 2 4 2 2
#> [14185] 1 2 2 5 4 4 1 5 4 3 1 2 2 3 3 1 2 1 2 2 5 2 4 2 1 1 5 5 5 5 4 1 1 3 2 2
#> [14221] 4 2 1 2 3 2 2 3 3 2 2 5 3 1 2 3 1 1 1 5 3 2 4 2 5 5 2 2 2 5 3 3 5 2 3 3
#> [14257] 4 2 5 1 5 2 2 2 5 2 1 5 2 2 1 5 2 5 5 2 2 4 1 2 2 1 2 1 1 5 3 1 3 1 2 2
#> [14293] 2 3 3 1 2 1 2 1 2 2 1 2 5 2 1 1 4 3 4 5 1 5 5 5 2 2 2 1 2 2 2 2 2 3 3 3
#> [14329] 2 5 2 2 2 2 2 1 2 2 2 1 2 3 4 2 1 3 2 1 5 2 5 1 2 3 3 2 5 2 1 2 5 5 3 3
#> [14365] 2 1 1 5 3 3 2 5 2 4 5 4 5 2 5 1 2 1 3 5 2 1 4 2 1 2 5 2 4 5 2 5 2 1 3 2
#> [14401] 4 2 1 5 2 5 3 2 4 2 2 2 3 2 4 5 3 3 4 3 1 1 3 3 4 2 5 3 3 2 2 2 4 2 4 2
#> [14437] 4 5 2 2 1 3 3 2 2 1 2 2 4 4 5 2 3 2 2 2 1 2 4 5 1 3 2 2 2 2 2 1 2 2 4 2
#> [14473] 2 3 2 2 1 5 2 2 2 2 2 1 2 2 3 2 1 2 2 3 4 2 3 4 5 2 1 3 4 2 5 2 5 3 2 1
#> [14509] 1 2 1 5 3 4 4 2 1 2 2 3 2 2 4 2 1 2 2 2 3 1 5 5 3 3 1 5 2 2 2 1 1 3 3 1
#> [14545] 2 4 1 3 2 3 2 5 2 3 2 2 2 3 1 2 2 2 3 4 2 1 2 2 2 5 1 3 2 2 2 2 3 2 2 2
#> [14581] 5 3 3 5 2 2 1 2 3 2 3 3 5 2 3 5 3 4 2 3 3 4 4 1 2 1 4 3 2 3 2 5 2 5 5 4
#> [14617] 4 1 3 5 2 5 5 3 3 2 2 3 2 2 2 3 3 2 2 2 5 1 2 5 4 5 2 5 5 2 4 2 4 3 2 5
#> [14653] 2 3 5 3 2 2 1 3 1 3 3 4 3 3 5 1 3 1 2 1 3 2 2 1 4 1 2 2 3 2 5 5 1 5 2 1
#> [14689] 3 4 3 2 4 2 3 3 3 1 2 1 2 5 5 5 3 1 5 3 3 3 4 2 1 3 5 2 2 1 3 3 2 5 2 5
#> [14725] 5 5 5 5 5 3 1 5 4 2 1 3 2 2 2 2 2 2 1 5 2 4 2 3 5 2 3 2 2 3 2 2 3 2 4 2
#> [14761] 4 3 3 3 3 2 3 2 2 4 3 2 1 5 5 2 1 1 2 2 2 5 5 3 4 2 2 2 2 3 4 4 5 2 5 2
#> [14797] 2 4 2 1 4 3 4 2 2 4 4 3 5 4 2 3 1 5 2 2 2 2 2 5 2 3 4 2 1 5 1 3 1 5 2 2
#> [14833] 2 2 2 2 4 1 2 1 2 3 2 2 3 3 1 5 1 5 2 2 1 4 3 1 3 3 5 3 1 2 1 3 2 2 3 2
#> [14869] 2 3 3 2 5 2 5 2 5 4 2 3 3 3 5 1 4 2 1 2 2 3 3 3 2 2 2 1 4 2 3 2 1 3 2 4
#> [14905] 3 4 2 5 2 5 5 5 1 5 5 3 5 2 5 4 3 3 2 4 5 2 2 5 3 2 3 5 2 1 5 1 3 2 5 2
#> [14941] 3 1 3 1 2 2 2 2 2 3 5 5 4 2 4 2 4 3 5 2 2 2 3 3 2 1 2 2 2 2 5 1 4 2 1 2
#> [14977] 2 1 4 2 5 4 3 4 2 4 2 5 2 2 1 2 4 4 2 4 2 2 1 2 2 4 2 2 4 2 3 3 1 2 2 2
#> [15013] 2 1 1 3 3 3 2 2 5 2 5 3 3 2 2 3 2 2 2 4 3 1 5 2 2 1 5 3 5 3 3 2 2 4 4 4
#> [15049] 1 2 5 2 3 2 1 4 4 2 5 3 2 2 1 2 4 2 3 1 4 2 3 3 4 4 1 2 3 1 2 3 2 2 3 5
#> [15085] 4 5 4 5 1 1 1 2 2 1 5 4 5 1 2 2 1 2 2 3 4 2 3 2 1 2 3 3 3 2 2 3 5 3 3 4
#> [15121] 1 2 4 2 5 1 2 3 2 1 2 3 1 5 3 2 2 3 3 3 3 1 2 2 2 1 2 3 2 2 2 2 1 4 5 2
#> [15157] 3 1 3 1 3 3 5 5 2 1 1 3 2 2 2 1 3 2 1 3 3 3 1 1 2 3 3 4 2 4 3 1 2 5 2 2
#> [15193] 2 5 2 2 3 2 5 4 2 2 3 2 3 2 2 4 2 5 1 2 2 1 4 2 5 2 2 5 2 1 3 2 5 2 2 5
#> [15229] 3 5 3 1 1 3 4 3 4 2 5 4 2 2 1 2 2 2 2 2 1 4 2 5 5 3 3 2 3 1 3 2 4 1 3 2
#> [15265] 1 2 2 5 2 1 3 3 2 5 2 1 3 2 1 2 2 3 2 3 2 2 3 4 2 4 5 4 3 4 2 2 4 5 4 3
#> [15301] 5 2 1 3 2 3 3 5 3 1 3 2 3 2 1 5 5 2 3 3 1 1 2 3 2 2 2 2 3 2 2 4 1 4 2 2
#> [15337] 2 3 2 3 4 1 1 1 4 2 1 2 2 1 1 4 2 2 5 3 2 4 5 3 3 1 3 2 5 4 1 2 5 4 2 5
#> [15373] 2 3 4 2 2 1 3 1 2 2 5 1 3 3 2 2 2 1 5 5 1 2 5 2 2 2 3 1 2 1 3 4 2 5 3 2
#> [15409] 1 3 1 3 2 2 1 4 2 4 2 5 3 3 5 2 3 2 3 5 2 3 5 3 2 2 3 3 5 2 1 3 4 5 2 2
#> [15445] 2 1 2 2 2 4 1 4 4 3 5 5 2 1 3 2 2 2 4 1 2 2 1 1 5 2 2 1 5 2 5 2 4 3 2 1
#> [15481] 2 2 1 2 1 5 4 5 4 2 5 1 1 3 4 5 4 4 2 5 2 3 2 2 1 3 2 2 1 3 2 2 3 1 5 5
#> [15517] 2 2 2 3 3 2 3 5 2 1 2 2 5 5 5 2 2 2 5 5 2 2 3 2 3 4 3 2 4 5 2 5 5 2 1 2
#> [15553] 2 5 3 5 2 5 2 1 1 4 2 2 2 2 2 3 2 2 2 2 2 2 2 3 2 3 3 3 2 3 3 2 5 3 2 3
#> [15589] 2 5 2 3 2 1 3 3 5 5 5 4 2 2 3 5 3 2 4 1 5 3 2 5 1 2 2 4 3 2 1 5 2 2 5 3
#> [15625] 1 2 2 2 2 1 2 2 3 2 4 3 2 3 2 2 2 3 3 5 2 1 3 3 4 2 3 5 2 3 2 3 3 4 5 2
#> [15661] 2 2 5 1 2 3 4 2 5 4 5 5 2 2 5 3 1 2 2 5 1 1 4 4 5 2 2 5 2 3 1 5 5 1 2 1
#> [15697] 3 1 5 2 2 3 2 1 2 2 2 5 3 2 2 2 4 3 2 4 3 3 4 1 2 2 4 3 3 2 5 5 4 2 2 1
#> [15733] 2 3 1 2 3 4 5 2 1 1 4 3 5 4 5 5 3 2 5 2 5 2 1 3 1 2 2 3 2 2 5 2 2 3 1 4
#> [15769] 3 5 3 2 2 2 3 3 2 3 3 3 3 3 5 2 3 5 5 4 5 5 2 4 5 2 3 2 2 5 2 4 2 2 1 4
#> [15805] 1 3 3 2 5 3 5 4 1 4 3 3 3 2 3 2 2 3 1 2 2 1 5 2 2 1 2 4 5 3 3 3 5 2 5 2
#> [15841] 3 3 4 1 5 3 2 4 3 2 1 4 5 3 2 2 2 4 2 2 5 3 2 1 2 5 1 3 5 2 5 3 2 2 3 3
#> [15877] 2 5 4 3 4 1 5 2 3 2 4 2 4 2 3 2 1 4 3 2 3 1 4 1 5 2 2 4 3 4 3 2 2 2 4 2
#> [15913] 2 2 2 5 4 2 3 1 2 3 1 1 2 3 2 4 2 1 1 3 5 5 2 4 2 5 5 5 1 2 2 3 3 2 3 1
#> [15949] 1 1 5 1 1 2 4 2 2 2 2 5 2 2 2 3 2 3 1 1 2 2 1 2 2 3 3 3 3 5 3 2 3 5 5 5
#> [15985] 4 1 3 5 5 5 3 2 2 2 1 5 3 3 5 4 3 2 4 1 1 3 5 4 5 2 4 1 2 1 2 2 4 2 5 4
#> [16021] 2 4 2 2 2 2 1 2 1 3 1 2 5 5 2 3 2 2 1 2 3 5 3 2 3 2 2 2 5 3 3 2 2 1 2 2
#> [16057] 2 5 2 2 1 5 5 2 3 3 2 1 2 1 4 4 5 2 3 4 2 2 2 4 2 3 1 3 4 5 2 5 3 2 1 1
#> [16093] 2 4 3 5 2 3 2 3 2 3 5 5 2 2 1 1 2 1 5 2 1 2 2 5 3 2 5 2 5 2 1 5 2 3 5 1
#> [16129] 3 2 2 2 4 4 4 2 2 2 5 3 5 3 2 5 2 5 1 2 2 3 3 2 3 2 2 1 3 4 4 5 5 4 4 5
#> [16165] 5 2 1 1 2 1 1 2 3 5 4 3 2 2 5 1 2 2 4 5 4 3 2 1 2 3 2 2 5 3 5 2 5 5 2 2
#> [16201] 1 3 2 2 3 2 1 5 2 5 3 2 1 3 3 2 2 2 2 3 2 2 5 5 3 3 2 2 2 2 1 2 1 2 3 1
#> [16237] 2 2 3 1 2 1 3 3 2 3 1 3 2 2 5 2 2 4 3 1 3 2 2 2 2 4 3 2 3 2 2 4 2 2 1 1
#> [16273] 3 3 4 5 2 5 1 4 3 2 3 1 2 3 2 2 2 3 1 5 2 3 4 3 3 1 5 2 1 5 3 2 1 1 5 2
#> [16309] 2 5 2 2 3 3 5 2 5 1 3 1 2 1 5 1 1 5 2 1 2 2 2 2 3 3 2 2 3 2 4 1 5 2 5 2
#> [16345] 2 2 5 4 2 3 3 2 5 1 2 3 4 2 3 2 2 2 2 3 3 1 2 5 2 2 1 5 2 3 3 2 2 2 3 4
#> [16381] 2 1 2 1 2 5 1 5 2 3 2 3 2 1 3 3 4 1 3 4 1 4 1 2 2 2 2 3 1 5 2 3 4 2 3 2
#> [16417] 3 4 2 3 2 2 3 5 5 2 1 2 2 3 1 2 2 2 5 1 5 5 4 5 5 2 3 2 5 1 1 1 3 5 3 1
#> [16453] 2 5 1 2 3 2 3 4 3 4 5 3 5 3 2 2 3 3 5 5 1 2 2 4 2 5 2 4 1 2 5 3 4 1 1 4
#> [16489] 3 4 2 1 2 3 2 2 1 5 2 2 2 5 3 3 4 3 2 5 3 3 5 5 5 2 1 2 5 4 2 2 5 2 2 2
#> [16525] 2 2 3 5 5 3 1 3 1 4 1 5 2 5 4 3 1 4 4 5 4 2 5 5 4 3 3 3 2 3 2 3 4 3 5 2
#> [16561] 3 3 2 2 5 3 3 2 2 3 3 2 1 4 4 1 5 3 5 2 1 2 2 1 1 2 2 1 2 4 3 4 2 3 2 2
#> [16597] 3 3 2 2 1 1 1 1 5 5 5 4 2 2 2 5 2 5 2 3 2 5 2 2 3 4 4 1 2 2 5 5 3 2 3 2
#> [16633] 2 4 2 3 2 2 2 2 2 5 2 3 1 2 2 4 2 2 4 3 2 1 3 5 2 2 3 4 1 2 5 2 2 4 4 2
#> [16669] 3 1 4 2 5 1 1 3 1 3 2 1 5 2 2 3 2 4 4 3 2 2 2 2 2 3 3 2 5 3 3 2 3 3 1 4
#> [16705] 2 5 1 1 4 2 1 2 2 3 2 2 1 3 2 2 1 3 3 3 5 4 1 3 2 5 2 3 4 2 2 2 2 2 4 1
#> [16741] 3 2 3 2 2 2 2 2 5 3 2 3 5 4 1 3 4 2 5 5 4 5 4 4 3 4 2 3 2 2 1 2 3 3 1 5
#> [16777] 2 5 5 3 3 5 3 5 3 2 2 2 5 4 1 4 1 1 2 3 2 3 5 5 2 2 2 2 1 2 2 3 1 1 2 2
#> [16813] 4 3 2 4 2 4 3 2 3 2 4 3 1 2 1 1 2 2 5 3 2 1 2 3 5 2 2 1 1 4 2 3 2 3 1 2
#> [16849] 2 1 2 2 3 1 1 2 1 5 2 2 2 4 2 3 3 2 3 2 5 3 1 1 3 5 1 3 4 2 3 4 2 5 1 2
#> [16885] 3 2 1 3 3 5 2 4 1 2 1 4 3 2 2 1 2 5 2 2 2 3 3 2 1 5 1 1 5 2 2 1 4 2 2 2
#> [16921] 1 2 3 2 1 4 5 1 1 2 2 2 2 3 2 3 4 3 5 2 2 2 2 3 2 1 2 5 3 3 2 4 3 1 3 3
#> [16957] 3 2 3 2 1 1 2 2 5 2 2 2 3 5 3 2 2 3 2 3 3 5 1 1 2 4 2 1 3 2 2 2 4 4 2 2
#> [16993] 2 5 4 1 3 5 2 5 2 2 3 2 5 1 2 2 5 2 2 2 3 1 2 2 2 1 1 2 2 4 3 4 1 2 2 1
#> [17029] 3 3 2 1 1 3 1 4 2 2 1 5 2 2 4 5 2 1 3 2 4 2 2 3 5 2 1 5 4 2 2 2 2 3 2 5
#> [17065] 1 2 1 5 1 5 2 1 4 2 5 2 5 4 5 2 2 3 5 2 4 2 2 3 4 4 2 5 2 1 3 3 1 2 5 1
#> [17101] 2 2 2 3 4 1 2 5 2 2 1 5 1 1 5 3 1 2 3 2 1 4 2 3 4 5 2 3 2 2 3 4 4 2 5 1
#> [17137] 2 5 5 2 2 2 2 4 3 2 1 1 5 2 5 4 2 2 3 2 5 2 5 2 2 3 2 3 4 3 2 1 3 2 1 5
#> [17173] 2 1 1 1 1 5 2 3 3 2 4 5 2 2 2 1 1 5 1 1 5 2 3 2 2 2 2 3 1 3 2 1 1 4 1 4
#> [17209] 3 5 2 5 2 2 3 2 5 5 2 3 4 2 2 5 3 3 5 5 1 1 3 4 4 2 3 4 3 3 3 1 4 1 3 5
#> [17245] 5 4 1 2 2 5 4 3 2 4 5 4 2 1 2 2 1 2 3 2 2 3 5 4 2 1 5 4 3 2 3 5 2 2 5 2
#> [17281] 2 2 1 1 2 4 4 3 2 3 5 2 1 1 3 5 2 2 5 1 2 2 3 5 2 2 3 5 2 5 4 3 2 1 2 2
#> [17317] 5 2 2 4 3 4 3 2 5 2 5 3 5 2 1 2 4 5 2 3 1 3 2 2 2 3 5 2 3 3 1 2 5 2 3 1
#> [17353] 5 1 2 2 5 3 5 2 3 2 2 2 2 5 5 2 2 2 3 2 2 5 2 1 2 4 2 2 2 4 2 1 4 2 2 3
#> [17389] 5 2 2 3 5 4 4 3 5 5 2 2 4 1 2 2 1 5 2 2 1 3 2 1 2 2 2 5 2 5 1 2 2 2 2 2
#> [17425] 5 4 5 5 2 3 3 5 2 2 2 1 4 2 5 2 2 1 5 5 2 2 1 2 3 2 2 2 3 2 2 2 2 2 1 3
#> [17461] 3 3 3 1 4 2 3 4 2 3 2 5 4 3 2 3 1 2 3 5 2 2 5 2 2 4 4 2 5 2 3 2 1 3 1 2
#> [17497] 2 2 2 3 2 2 5 1 1 4 2 5 2 3 5 3 5 3 4 5 5 3 2 3 2 3 5 3 2 3 5 5 1 2 3 3
#> [17533] 2 3 2 5 4 2 5 1 2 4 1 5 3 4 3 1 3 2 5 2 1 2 4 1 3 2 5 5 5 3 1 2 3 3 3 3
#> [17569] 2 3 2 3 2 1 2 4 4 3 3 2 2 5 4 2 1 2 3 2 1 1 4 4 3 2 1 4 2 2 2 3 3 3 5 2
#> [17605] 4 3 2 2 2 1 4 5 3 3 3 4 2 1 4 4 2 3 5 1 3 2 2 3 5 5 1 1 2 4 3 1 2 2 2 3
#> [17641] 4 4 4 3 2 1 1 2 3 5 5 2 2 5 2 2 5 4 2 5 2 5 5 3 4 3 4 5 5 2 3 2 3 5 4 3
#> [17677] 3 2 1 5 2 2 3 5 5 3 4 5 3 1 5 2 5 2 2 4 3 3 3 3 3 3 5 2 5 2 2 5 5 4 2 2
#> [17713] 1 2 2 3 4 1 5 2 1 3 3 2 2 2 2 1 2 1 2 3 2 4 3 2 1 3 3 3 5 4 2 3 2 3 5 2
#> [17749] 1 5 2 3 2 3 3 1 2 2 4 2 4 2 2 3 2 3 3 1 3 5 4 5 2 2 4 4 3 5 5 2 2 3 4 3
#> [17785] 5 2 5 1 1 4 2 2 1 3 3 1 3 2 2 2 2 5 2 3 2 2 5 2 2 4 2 1 1 1 2 3 4 2 1 1
#> [17821] 4 3 2 3 1 2 2 2 2 2 1 5 2 3 5 4 3 2 4 5 1 1 5 1 2 2 2 4 3 2 1 3 5 3 3 4
#> [17857] 3 3 5 3 5 2 2 2 2 5 2 1 5 2 3 2 1 2 2 3 5 3 5 2 2 1 5 5 3 2 2 2 2 2 4 3
#> [17893] 3 3 4 2 2 5 3 2 3 2 2 3 3 5 4 4 4 1 1 3 2 3 2 3 1 4 4 5 5 3 2 1 5 1 1 3
#> [17929] 2 2 4 5 5 2 5 2 3 2 2 1 2 2 3 2 3 1 5 5 1 5 1 2 2 2 2 2 2 5 2 3 2 2 2 3
#> [17965] 2 2 5 3 4 3 3 4 2 4 1 2 5 1 2 2 5 4 5 1 5 2 1 3 3 2 3 4 4 3 3 1 4 3 2 3
#> [18001] 2 5 1 2 3 4 3 2 1 3 4 3 3 1 5 3 5 3 5 2 1 1 3 2 2 1 2 4 4 4 1 5 5 5 2 5
#> [18037] 1 5 2 2 2 5 4 1 3 2 2 1 4 2 2 2 1 2 5 1 2 2 4 3 1 5 4 2 1 4 2 5 3 1 3 3
#> [18073] 2 2 2 2 3 1 4 5 5 4 1 2 5 2 3 3 5 3 2 2 1 3 2 5 2 3 4 2 4 4 2 5 2 2 3 1
#> [18109] 5 5 3 2 2 5 2 3 2 2 4 3 2 2 5 1 5 1 5 2 2 4 2 1 5 5 3 2 3 1 1 5 2 2 3 3
#> [18145] 2 1 4 2 4 2 3 5 3 4 5 2 2 4 1 5 4 5 4 5 3 3 5 1 3 5 3 4 3 1 5 4 2 2 1 3
#> [18181] 1 3 2 5 3 3 2 5 5 2 2 1 2 2 2 3 3 3 5 2 5 3 2 2 2 5 2 1 5 5 3 1 5 3 2 4
#> [18217] 2 5 2 2 3 3 2 5 2 3 3 5 4 2 3 5 3 5 3 4 2 2 5 3 3 3 2 2 3 5 2 2 2 2 5 3
#> [18253] 1 3 2 2 3 3 1 3 2 2 2 4 5 2 4 3 4 2 4 2 1 2 3 5 2 5 3 3 2 2 2 5 3 5 2 4
#> [18289] 2 1 2 4 2 5 1 1 1 1 3 5 4 3 2 2 5 2 5 2 3 2 5 2 3 3 3 2 2 2 2 2 4 4 2 2
#> [18325] 2 1 2 3 5 5 3 5 2 1 5 2 2 2 2 2 2 3 1 4 2 4 5 2 2 1 4 1 2 3 3 3 2 2 2 2
#> [18361] 3 1 2 3 5 2 1 2 3 1 3 3 2 3 2 2 2 4 3 5 1 1 3 5 1 2 2 3 3 2 2 5 1 3 3 3
#> [18397] 3 3 1 1 2 2 4 3 2 3 1 3 2 3 2 2 2 5 2 2 2 2 1 2 5 5 2 2 1 3 2 2 2 5 4 2
#> [18433] 3 3 3 2 2 4 2 2 4 2 2 3 1 3 4 3 4 5 1 2 1 1 5 1 2 2 4 5 2 2 2 4 2 4 2 2
#> [18469] 2 1 4 1 5 3 3 5 1 4 2 3 5 1 5 2 4 2 4 3 5 2 3 3 2 3 5 2 3 2 2 1 2 2 1 2
#> [18505] 3 2 5 2 5 3 3 2 1 2 1 1 4 5 2 3 2 5 2 2 3 3 4 1 2 4 3 2 3 2 4 3 4 1 2 2
#> [18541] 2 3 2 3 2 5 2 2 5 4 1 3 2 2 2 1 3 3 2 5 3 5 2 2 4 2 5 3 1 3 4 1 2 2 1 2
#> [18577] 2 1 2 3 1 2 2 1 2 5 3 4 5 2 4 2 2 3 3 2 2 2 2 2 1 5 2 1 1 2 5 5 2 1 2 5
#> [18613] 2 3 5 1 3 2 3 3 1 2 2 2 5 2 1 1 5 3 1 2 5 2 2 4 3 3 4 2 3 3 3 1 2 2 5 2
#> [18649] 4 3 2 3 5 3 4 5 4 2 2 5 2 5 1 2 3 1 1 2 3 5 1 1 2 5 5 5 2 2 5 3 2 1 3 1
#> [18685] 1 3 1 3 2 1 5 2 1 2 2 5 3 3 2 2 2 4 3 4 4 3 3 3 2 5 5 1 4 3 1 2 2 2 3 1
#> [18721] 5 4 2 3 4 2 5 3 5 3 4 5 1 2 5 2 2 5 4 2 2 3 3 2 5 2 5 5 2 1 5 3 2 2 1 2
#> [18757] 2 1 2 2 1 1 3 4 4 1 2 2 4 5 5 5 3 2 2 5 2 2 2 2 2 4 4 4 2 3 4 4 1 4 2 3
#> [18793] 5 1 2 3 2 3 2 3 2 4 2 1 2 2 1 2 2 5 5 4 4 2 2 4 2 4 5 3 5 4 1 2 3 1 2 3
#> [18829] 1 2 2 4 1 2 2 4 1 1 5 5 5 3 4 3 3 3 2 3 2 2 3 3 2 4 2 3 5 3 4 2 3 5 5 3
#> [18865] 5 3 1 5 3 5 5 1 4 3 5 5 5 2 4 3 2 5 2 4 4 3 5 5 2 3 2 2 2 2 2 5 2 2 5 2
#> [18901] 5 4 1 4 4 5 4 1 4 2 2 2 3 2 4 5 3 2 2 2 2 3 4 2 5 4 3 1 2 5 4 5 5 5 2 5
#> [18937] 2 1 4 5 2 2 3 1 3 3 2 4 1 2 3 2 3 2 3 5 1 5 4 5 2 2 3 5 5 5 2 1 4 2 5 1
#> [18973] 3 1 4 3 3 3 5 2 1 5 4 1 3 3 4 2 5 2 3 5 1 3 3 2 2 3 2 3 5 3 2 2 2 1 4 5
#> [19009] 5 3 2 2 4 2 1 5 2 1 3 3 4 3 2 1 3 2 5 5 5 2 3 2 2 3 2 3 3 2 2 2 3 1 2 2
#> [19045] 4 5 2 2 3 2 5 5 3 4 5 2 2 2 1 2 2 3 4 4 3 5 5 5 2 5 2 3 3 1 3 5 1 2 5 3
#> [19081] 5 2 3 1 5 2 5 2 5 5 2 3 4 1 1 5 1 2 1 2 2 3 2 4 3 1 3 5 1 4 2 2 2 2 5 4
#> [19117] 3 1 2 4 1 2 4 5 5 5 3 2 2 5 2 5 1 2 2 4 5 2 3 5 2 2 5 3 1 2 5 2 5 3 4 3
#> [19153] 3 4 2 4 4 2 3 3 2 5 3 2 5 2 5 3 5 2 2 2 2 5 2 3 4 3 2 2 5 3 3 5 4 4 4 4
#> [19189] 3 5 2 3 4 5 3 2 2 3 1 4 2 2 5 5 2 3 2 5 5 2 3 3 2 5 2 5 2 2 5 5 2 2 2 5
#> [19225] 2 1 1 1 2 3 2 3 2 5 4 1 3 2 3 3 5 1 1 2 4 3 1 3 2 2 2 3 4 1 3 2 2 2 3 2
#> [19261] 5 2 1 5 2 5 3 2 2 1 1 2 2 5 4 2 4 5 1 4 5 2 2 2 1 1 2 3 3 1 2 2 5 5 5 2
#> [19297] 2 2 1 3 1 2 4 5 4 5 2 2 2 3 2 2 2 3 5 2 2 2 4 1 5 2 4 2 5 2 3 3 1 5 2 2
#> [19333] 4 1 3 3 3 4 3 3 3 5 5 2 3 2 1 1 2 5 1 5 5 5 2 2 1 1 2 4 4 2 4 2 3 1 1 1
#> [19369] 2 3 2 2 4 5 1 5 2 1 2 3 1 2 5 2 2 2 5 2 1 5 4 2 2 1 2 1 3 1 2 3 5 4 2 2
#> [19405] 2 2 3 1 5 3 1 4 1 4 4 1 3 2 2 2 2 2 5 5 2 2 2 3 3 2 1 2 2 3 2 2 1 5 2 3
#> [19441] 2 1 2 2 2 3 2 2 3 1 2 1 2 5 3 3 2 2 5 1 5 1 5 3 2 1 2 4 3 5 3 2 1 1 2 2
#> [19477] 1 1 2 3 2 4 2 5 5 5 2 3 2 5 1 2 3 4 3 2 2 1 5 2 3 4 5 3 3 4 1 3 3 3 2 2
#> [19513] 3 4 3 3 3 2 3 2 1 2 2 2 2 5 4 4 5 2 5 2 2 3 2 2 3 4 2 3 3 2 2 5 4 1 1 4
#> [19549] 1 4 2 2 2 4 2 4 2 5 5 5 4 1 3 4 1 1 5 4 2 5 2 2 1 2 5 3 2 2 3 5 2 4 3 3
#> [19585] 1 2 1 2 3 3 2 2 3 5 3 3 2 1 2 4 3 4 2 2 2 2 2 2 2 2 2 3 5 3 2 3 2 2 2 5
#> [19621] 2 2 5 5 2 2 3 2 3 3 3 2 2 1 1 3 3 3 3 5 1 2 2 5 2 1 1 3 3 5 2 3 2 4 2 4
#> [19657] 2 2 3 1 3 1 3 5 2 3 1 1 3 2 2 4 2 5 2 2 2 4 3 3 2 2 2 2 5 2 2 2 2 1 4 3
#> [19693] 2 3 2 3 4 2 2 2 3 2 5 2 3 3 2 5 3 2 2 5 1 2 2 1 2 3 1 1 1 1 2 3 2 5 2 3
#> [19729] 1 5 2 3 4 1 3 1 4 1 5 5 2 2 4 2 2 2 3 2 3 5 3 4 5 3 2 3 1 4 5 1 2 2 2 3
#> [19765] 4 1 2 3 1 5 4 3 1 1 3 2 2 2 2 4 3 2 4 4 4 1 2 2 1 2 2 1 2 3 3 1 4 3 3 5
#> [19801] 1 3 2 2 3 2 2 5 5 2 3 3 2 5 4 2 2 1 3 3 5 3 2 5 5 1 3 2 3 2 5 2 2 4 3 2
#> [19837] 5 3 2 2 1 2 5 2 2 5 1 2 2 2 5 3 5 3 4 5 5 2 3 5 2 3 3 2 3 2 2 2 2 2 3 4
#> [19873] 5 1 4 4 1 3 2 2 2 4 2 1 2 3 2 4 2 2 4 5 2 1 3 3 5 3 3 2 5 1 5 3 3 3 3 2
#> [19909] 2 2 1 3 1 5 5 5 2 5 1 3 4 2 2 4 4 5 5 2 2 2 4 2 5 3 5 2 2 1 2 4 5 3 2 3
#> [19945] 2 3 4 2 3 1 1 2 1 3 2 1 3 1 1 2 2 2 3 1 5 3 2 3 5 2 3 5 2 5 2 2 1 5 3 2
#> [19981] 4 5 2 4 1 2 1 2 3 5 4 1 2 2 4 5 1 2 3 2 1 2 5 4 4 3 3 2 5 3 2 2 5 1 4 5
#> [20017] 1 1 3 2 3 5 3 5 2 5 2 2 3 3 2 2 1 3 5 1 5 2 4 4 3 4 2 2 2 5 2 2 4 3 2 2
#> [20053] 4 4 5 2 3 2 2 2 4 4 5 1 1 4 2 3 2 5 5 2 2 1 2 2 2 3 2 4 5 2 5 3 3 2 1 4
#> [20089] 5 1 2 4 3 2 3 2 1 2 4 2 4 1 1 1 4 1 3 5 2 2 5 5 1 2 1 3 2 2 1 2 2 3 4 3
#> [20125] 4 3 5 3 2 2 2 3 3 5 3 4 4 3 5 5 3 3 2 2 2 5 5 4 2 2 3 2 2 2 5 5 2 1 2 3
#> [20161] 4 2 5 3 5 5 3 2 2 2 2 4 2 3 3 2 2 2 2 4 3 5 2 2 3 2 2 5 2 1 3 2 2 3 3 4
#> [20197] 2 5 4 5 4 5 4 2 2 2 2 2 5 3 5 2 2 4 5 2 3 5 3 3 1 5 3 1 1 5 5 4 2 2 1 2
#> [20233] 2 3 4 5 3 2 4 2 2 2 3 2 5 4 2 2 4 5 5 4 2 1 3 5 3 4 2 3 4 2 3 4 2 2 2 2
#> [20269] 2 2 3 5 5 3 3 2 4 1 2 2 1 1 4 5 1 2 4 3 5 1 2 2 2 3 5 2 1 1 3 5 2 4 2 2
#> [20305] 2 2 5 3 5 1 1 5 2 4 1 4 3 5 4 5 2 2 2 2 2 1 2 5 3 2 2 4 3 2 1 3 2 2 4 2
#> [20341] 2 3 2 2 4 2 2 4 2 1 4 2 2 2 5 5 2 3 5 3 2 5 2 3 2 3 2 2 4 4 3 4 3 1 3 5
#> [20377] 2 2 2 4 2 4 2 2 5 2 2 5 2 3 4 5 3 4 5 5 1 5 2 1 2 2 1 2 2 1 1 2 3 3 5 2
#> [20413] 3 2 4 3 2 5 1 2 1 1 4 1 2 2 5 3 4 2 4 5 2 2 4 5 2 5 1 2 3 4 2 2 5 1 2 5
#> [20449] 5 2 1 4 1 5 2 4 4 3 4 2 5 4 3 4 2 1 1 2 1 2 1 3 3 1 2 2 2 1 4 5 3 1 1 2
#> [20485] 1 3 2 5 2 3 5 3 1 2 3 5 2 3 5 5 1 1 3 4 2 4 3 1 2 2 2 2 2 2 4 2 5 2 5 2
#> [20521] 2 2 2 3 5 3 2 4 4 1 1 3 4 1 3 3 4 4 3 2 2 5 4 2 3 3 1 5 5 5 1 3 2 5 5 5
#> [20557] 2 2 4 5 2 3 3 5 3 2 4 2 1 3 5 5 3 4 1 5 1 2 5 1 2 5 4 2 5 3 1 2 4 2 4 1
#> [20593] 3 1 1 5 1 3 2 1 3 2 5 2 4 1 2 5 1 3 3 3 2 1 5 2 4 1 1 5 3 5 4 5 3 2 1 2
#> [20629] 1 5 2 5 2 3 1 2 4 2 1 3 1 2 2 2 2 4 1 3 2 4 2 3 3 2 3 4 1 4 2 3 1 1 2 2
#> [20665] 1 2 5 5 4 1 2 2 2 1 4 2 4 1 2 4 2 5 1 2 1 2 2 2 4 2 2 1 5 4 3 2 1 3 4 2
#> [20701] 2 2 5 3 5 2 2 5 2 2 2 2 3 2 2 5 3 2 1 5 3 3 3 3 2 3 2 3 4 3 2 1 5 4 3 2
#> [20737] 3 1 3 2 2 4 2 3 2 2 5 5 4 3 1 3 5 5 2 2 3 5 2 2 2 2 3 1 5 2 3 5 2 1 1 5
#> [20773] 2 2 2 3 1 3 5 4 4 5 3 3 1 2 1 5 2 1 4 1 2 2 1 5 4 2 5 5 3 3 5 2 1 4 5 3
#> [20809] 3 1 1 4 3 2 2 5 5 2 5 3 4 2 4 2 2 4 2 5 3 4 2 3 1 5 1 3 5 2 4 2 2 5 4 5
#> [20845] 2 1 1 1 4 5 2 3 3 2 5 3 5 3 5 2 5 2 3 2 2 4 2 2 2 2 2 2 3 5 2 5 4 5 2 1
#> [20881] 2 2 2 2 2 2 5 3 3 3 1 2 1 2 1 5 2 4 3 4 2 2 3 5 2 1 4 4 1 2 3 2 4 5 3 2
#> [20917] 2 4 3 4 2 2 2 3 3 4 5 5 1 2 5 4 5 5 2 1 3 2 3 2 1 5 1 2 3 1 2 3 3 4 1 2
#> [20953] 2 2 1 2 4 2 5 3 5 3 2 2 1 1 2 1 3 3 2 5 1 4 5 5 3 3 3 5 5 4 3 2 2 2 5 1
#> [20989] 2 2 5 2 2 5 2 5 3 2 3 2 3 1 2 3 3 2 2 2 5 4 5 5 2 3 2 3 1 4 1 2 4 4 3 3
#> [21025] 1 2 5 3 2 2 4 5 3 1 1 2 1 5 1 2 2 4 1 2 5 1 2 4 1 4 5 2 1 2 2 2 2 1 1 5
#> [21061] 1 2 4 1 3 2 4 3 2 2 3 3 3 4 3 1 3 2 2 3 3 1 2 5 1 2 2 2 4 5 1 1 4 4 1 4
#> [21097] 1 2 3 1 3 1 5 5 4 1 3 4 2 2 2 4 4 2 2 3 2 3 2 4 1 1 5 2 2 4 2 3 2 5 1 3
#> [21133] 1 2 2 5 3 2 2 2 3 2 1 4 3 3 4 3 4 1 2 3 1 3 5 1 1 1 3 4 3 1 3 1 2 4 4 2
#> [21169] 2 2 5 3 2 2 2 4 5 5 2 2 5 2 3 2 4 2 2 1 2 2 3 2 2 2 2 2 2 5 5 2 4 2 1 5
#> [21205] 2 2 4 4 5 5 2 5 1 1 3 2 1 2 1 3 2 3 3 4 3 4 5 2 2 3 2 3 5 2 4 2 3 2 2 5
#> [21241] 2 2 4 1 2 1 3 2 3 2 4 3 4 3 2 1 1 2 4 4 4 1 4 3 1 3 3 2 1 5 3 5 2 3 2 5
#> [21277] 4 3 3 5 1 2 3 3 5 2 5 2 2 2 3 3 1 1 3 1 5 5 1 2 2 5 2 3 3 2 3 2 5 4 5 5
#> [21313] 2 2 3 4 1 2 5 4 2 3 4 3 2 4 5 2 2 3 1 3 2 2 3 5 2 3 3 2 2 5 4 3 4 3 3 2
#> [21349] 2 2 1 2 4 3 2 2 2 2 4 5 3 1 1 2 3 5 2 2 2 4 2 2 5 3 3 2 2 2 3 2 5 2 2 4
#> [21385] 2 5 4 1 2 2 2 1 2 4 4 5 2 1 2 4 2 3 1 2 1 4 3 5 5 3 4 2 4 2 3 2 2 2 5 2
#> [21421] 2 4 2 3 5 3 2 2 2 2 4 3 2 3 2 2 5 2 3 2 1 2 2 3 2 2 2 5 2 2 2 2 4 5 4 3
#> [21457] 1 4 2 1 5 2 3 4 5 2 1 1 2 3 1 5 3 4 4 4 3 1 4 1 3 4 1 1 2 5 5 2 4 1 4 4
#> [21493] 1 1 2 4 4 5 3 5 2 1 2 2 2 2 4 2 2 3 3 5 1 5 5 3 3 2 3 2 5 2 1 4 5 1 2 3
#> [21529] 1 1 5 3 1 3 1 4 5 5 4 4 4 2 3 2 4 4 2 2 2 2 5 3 3 1 1 2 2 5 2 5 5 3 2 4
#> [21565] 5 2 5 2 5 2 5 5 3 5 4 4 3 1 3 2 1 4 2 3 2 4 4 1 4 2 2 3 2 2 2 1 2 2 5 5
#> [21601] 3 2 4 3 4 3 1 3 2 2 5 3 1 2 5 3 2 2 5 2 2 4 2 2 3 5 4 3 1 3 2 4 5 5 3 3
#> [21637] 3 3 2 2 2 4 2 1 2 3 2 3 1 4 3 2 2 2 2 3 3 2 3 1 3 3 3 3 2 2 5 2 3 3 3 4
#> [21673] 2 3 1 5 3 5 2 3 1 2 5 4 2 2 2 2 2 4 4 2 2 1 1 3 1 2 3 3 2 5 5 5 1 2 5 2
#> [21709] 1 2 4 5 3 2 3 2 3 2 2 2 5 3 1 1 2 1 2 3 3 1 5 1 4 2 2 4 2 2 4 2 2 2 2 2
#> [21745] 3 5 3 1 3 2 2 3 3 4 2 4 1 1 3 2 2 1 2 2 2 1 2 4 1 2 5 4 2 2 2 3 5 5 2 3
#> [21781] 2 1 3 2 5 2 3 2 1 2 2 4 2 4 3 3 3 2 3 1 4 5 1 5 3 1 4 2 3 1 5 5 3 5 5 2
#> [21817] 2 1 2 4 3 2 2 1 2 2 2 5 5 2 1 3 5 5 3 2 4 2 2 2 3 2 2 5 3 1 2 5 1 5 4 1
#> [21853] 1 3 2 2 1 4 4 5 5 1 5 1 5 2 2 1 3 2 2 2 2 4 3 5 4 5 2 4 2 1 4 1 5 2 4 2
#> [21889] 2 2 5 4 1 1 2 1 2 5 5 5 1 4 5 2 5 2 5 1 5 5 3 2 2 5 3 2 1 1 5 3 5 2 2 3
#> [21925] 3 2 5 5 3 2 4 2 3 4 2 3 2 5 3 1 3 2 3 2 4 2 5 2 4 4 3 3 2 2 4 3 2 1 2 2
#> [21961] 2 3 5 2 1 3 3 1 2 2 1 5 5 1 2 4 3 1 2 4 3 2 4 1 2 2 2 3 5 5 2 2 5 3 3 2
#> [21997] 1 2 5 2 2 2 1 5 2 1 1 1 4 5 3 1 2 2 2 3 4 2 5 4 3 2 3 4 3 5 4 2 5 2 4 1
#> [22033] 3 2 5 1 2 2 1 3 1 3 2 1 4 5 2 5 3 2 3 1 4 1 1 2 3 2 4 2 5 1 1 3 2 4 1 4
#> [22069] 5 1 2 2 5 4 2 4 2 3 4 1 5 4 2 1 3 2 4 1 5 1 3 1 2 3 4 5 2 2 2 1 2 3 3 3
#> [22105] 4 5 3 5 3 5 4 1 5 4 5 1 2 3 2 5 4 4 5 1 4 2 3 2 2 4 3 4 2 1 4 4 2 2 4 2
#> [22141] 2 2 5 4 1 3 2 5 2 2 5 5 1 2 2 5 1 1 3 3 1 1 2 5 2 2 4 4 1 4 5 1 4 2 3 1
#> [22177] 3 2 5 1 4 1 2 5 3 2 1 4 4 3 3 3 3 2 5 3 2 4 1 5 2 5 2 5 5 5 1 5 3 2 5 2
#> [22213] 2 1 2 5 5 1 1 2 3 2 2 4 2 1 2 5 2 2 2 2 2 5 5 1 3 2 2 4 5 1 2 3 2 5 5 2
#> [22249] 3 3 3 5 2 3 1 2 1 2 2 2 5 5 2 5 5 5 1 2 2 5 3 2 5 3 1 4 1 3 5 3 2 1 2 3
#> [22285] 2 5 2 2 4 3 3 2 4 3 2 4 1 2 2 1 2 2 2 2 5 4 2 3 3 2 3 1 2 5 5 1 1 2 5 3
#> [22321] 1 2 4 2 2 2 1 3 2 1 2 5 5 4 4 2 2 2 2 5 2 5 2 2 2 2 2 4 2 5 2 1 4 3 4 1
#> [22357] 5 5 3 1 5 1 3 4 3 2 1 5 1 5 5 5 5 4 3 5 4 1 2 2 2 2 3 4 3 3 3 1 2 5 2 1
#> [22393] 3 2 3 3 5 2 2 2 2 1 2 1 3 2 1 3 3 3 2 5 3 1 2 5 5 3 2 1 1 5 3 5 2 2 2 2
#> [22429] 3 4 2 5 5 5 2 1 2 1 3 2 2 2 1 3 2 4 2 4 1 3 1 4 3 5 2 3 2 5 1 2 2 3 1 2
#> [22465] 3 4 4 3 5 3 2 3 2 2 4 4 2 2 2 4 2 4 1 3 3 3 2 1 5 5 3 2 2 2 2 2 3 5 4 2
#> [22501] 2 2 3 2 2 5 5 5 3 5 2 1 3 4 2 4 3 2 3 3 1 5 5 4 5 4 4 5 5 2 2 5 4 1 3 5
#> [22537] 5 2 2 2 2 1 3 2 4 3 4 2 4 2 2 3 2 1 5 2 2 2 2 5 2 5 1 5 5 5 3 3 3 2 5 1
#> [22573] 3 3 3 2 2 2 3 2 2 4 5 5 3 3 3 3 2 2 4 4 2 3 2 4 2 3 5 2 3 3 3 1 2 2 2 1
#> [22609] 4 2 2 4 2 2 3 1 4 1 3 5 5 5 5 1 2 3 3 1 3 2 2 2 2 3 2 2 4 2 2 2 2 5 4 2
#> [22645] 3 2 2 2 4 2 3 3 4 4 5 5 3 2 2 2 2 3 3 2 2 3 5 3 3 2 2 4 2 3 3 2 4 1 3 1
#> [22681] 3 2 3 2 3 3 4 5 1 5 2 5 2 3 3 5 2 5 3 2 2 2 3 5 2 2 3 5 2 2 3 3 3 4 2 2
#> [22717] 2 2 2 3 2 2 4 2 2 4 2 5 2 5 2 5 5 2 5 1 2 2 3 3 2 2 5 3 2 1 1 2 4 1 2 1
#> [22753] 5 4 3 2 2 2 3 2 1 2 1 2 2 1 2 2 5 2 3 3 3 1 2 3 2 5 1 1 2 2 1 5 2 5 3 5
#> [22789] 1 2 5 3 3 2 5 2 4 5 2 5 3 3 4 1 2 5 2 4 2 4 3 2 3 2 4 5 3 2 1 4 1 5 2 2
#> [22825] 1 3 3 2 3 3 2 4 5 3 5 1 2 2 5 4 2 3 1 1 3 2 1 2 5 5 4 2 2 1 4 3 1 1 3 2
#> [22861] 1 4 1 1 5 3 2 3 3 2 5 2 2 1 5 5 2 5 3 2 5 2 3 2 1 2 5 5 3 1 2 1 1 2 5 2
#> [22897] 2 5 2 1 2 5 3 5 4 2 5 3 1 4 2 5 2 2 1 2 2 3 5 2 1 1 2 1 1 2 1 5 4 3 5 1
#> [22933] 2 2 3 3 2 2 5 2 5 2 5 1 3 2 2 2 5 2 2 2 5 3 3 3 2 4 2 2 3 2 2 2 4 5 1 4
#> [22969] 3 3 5 1 3 3 2 1 2 3 3 3 2 3 2 3 2 5 2 5 2 5 4 2 3 2 3 2 5 3 2 1 2 5 3 4
#> [23005] 1 2 1 3 2 2 5 3 2 4 2 2 4 1 4 3 4 4 3 1 3 2 3 2 5 2 2 2 3 5 1 1 3 3 3 3
#> [23041] 5 3 4 2 2 2 2 2 1 5 5 2 3 2 2 5 2 2 3 2 2 1 5 2 2 4 2 1 2 3 2 5 2 2 3 2
#> [23077] 3 2 5 2 2 5 2 1 2 5 5 3 5 3 1 2 3 2 1 2 3 3 2 3 2 4 2 3 2 5 4 4 5 2 2 3
#> [23113] 2 3 5 4 2 3 3 1 4 2 5 2 5 2 2 1 1 1 3 5 2 1 2 2 2 1 2 3 1 3 2 4 5 1 4 5
#> [23149] 2 2 5 2 2 3 1 3 5 1 5 2 2 3 4 5 3 2 2 1 3 2 3 4 2 2 2 3 1 4 3 2 4 2 3 5
#> [23185] 3 2 5 2 2 2 5 4 1 3 1 2 2 1 3 3 3 4 3 1 2 1 2 5 2 2 1 2 2 2 1 5 2 4 2 2
#> [23221] 2 2 5 2 2 2 1 2 2 3 2 2 2 1 4 2 2 2 5 3 3 4 2 2 5 5 2 5 4 2 5 2 2 4 3 5
#> [23257] 2 5 2 2 2 5 3 1 2 3 5 2 3 2 3 5 2 4 2 4 2 2 2 3 2 2 2 2 5 1 3 2 4 3 3 2
#> [23293] 2 3 3 3 5 3 1 5 2 5 5 2 5 1 2 4 3 5 3 2 1 1 4 4 3 5 3 4 5 5 2 3 4 5 2 2
#> [23329] 5 4 3 3 3 2 1 1 3 2 5 1 5 3 4 1 3 1 2 2 3 2 2 3 1 2 5 2 1 4 1 1 1 4 5 2
#> [23365] 3 1 3 2 2 5 3 1 5 4 1 1 5 2 2 3 2 4 2 4 3 2 5 2 2 5 1 1 2 2 2 2 3 4 1 2
#> [23401] 5 2 2 2 5 4 2 3 1 2 2 2 3 2 3 2 1 3 2 5 1 5 2 5 5 2 2 5 4 2 5 5 2 3 1 5
#> [23437] 3 4 5 2 2 3 2 1 2 2 2 3 2 2 2 2 2 1 5 4 1 5 1 2 2 4 3 2 2 4 5 2 2 2 2 4
#> [23473] 5 5 2 2 2 1 2 2 5 1 5 2 2 5 2 3 2 1 1 5 1 5 2 3 3 2 2 1 3 5 5 2 2 2 3 3
#> [23509] 3 2 5 2 4 2 3 2 2 2 4 5 5 1 2 2 1 5 3 1 5 4 2 4 2 2 4 2 5 3 1 3 5 5 5 1
#> [23545] 2 2 5 2 5 2 1 5 1 2 1 1 2 4 3 3 2 4 3 1 4 5 3 2 5 3 1 1 5 5 3 2 2 3 1 4
#> [23581] 2 1 2 1 3 2 3 3 4 5 2 2 1 3 2 5 1 1 3 4 2 2 3 3 1 2 2 1 2 2 4 2 2 2 3 2
#> [23617] 2 3 5 2 3 1 5 1 3 2 2 5 2 3 3 5 2 1 4 3 3 3 4 5 3 3 2 1 3 2 2 3 1 3 2 2
#> [23653] 2 4 2 2 2 3 1 1 1 5 4 2 2 5 4 1 5 1 3 2 2 2 3 2 4 4 3 2 3 5 3 5 4 4 2 2
#> [23689] 2 4 1 1 3 4 2 5 5 5 1 4 1 2 2 4 2 1 1 2 3 2 1 4 3 2 5 5 2 4 1 2 2 2 3 3
#> [23725] 2 2 2 2 2 2 2 5 1 3 1 3 1 4 2 1 3 2 2 4 5 2 1 2 2 5 2 5 2 1 5 3 2 5 2 5
#> [23761] 2 4 4 2 5 4 5 4 1 2 5 4 3 3 3 2 5 2 2 3 3 2 2 3 3 2 3 3 2 2 5 2 1 2 2 2
#> [23797] 2 4 1 5 5 2 3 5 2 2 5 5 2 2 2 2 1 2 3 2 5 2 2 2 5 1 3 1 2 2 3 4 3 3 2 2
#> [23833] 2 3 2 5 3 2 3 3 5 3 2 1 3 5 5 2 1 1 1 2 1 3 4 2 5 3 4 4 2 4 2 5 2 5 2 5
#> [23869] 2 3 5 1 2 2 3 5 2 2 3 2 2 3 1 2 2 5 3 4 4 2 2 1 2 1 4 3 3 2 1 2 1 5 1 1
#> [23905] 1 2 5 3 4 2 2 3 2 3 2 2 4 2 5 5 3 2 4 5 3 2 5 3 3 1 2 5 3 1 3 1 2 2 3 3
#> [23941] 3 4 3 2 3 3 1 2 1 2 2 2 1 2 5 3 5 5 5 3 2 1 2 1 2 1 5 5 1 2 2 3 3 5 4 5
#> [23977] 1 3 5 4 3 3 3 4 2 2 2 1 3 2 1 5 2 2 2 3 2 1 2 5 5 5 2 1 2 4 3 4 5 2 3 3
#> [24013] 3 2 2 2 2 2 2 2 2 2 3 2 3 2 1 5 2 1 1 1 2 3 2 2 3 2 2 4 2 5 3 1 3 5 5 1
#> [24049] 2 4 4 3 3 4 4 4 4 1 2 2 4 3 2 2 2 1 1 4 2 5 3 2 2 3 3 4 2 3 2 1 4 3 3 2
#> [24085] 1 5 2 1 2 5 5 3 3 1 4 2 4 2 4 2 2 2 2 3 3 3 3 2 2 3 2 2 2 2 3 1 2 1 5 2
#> [24121] 2 3 1 1 2 5 5 3 4 1 4 2 3 1 3 5 2 1 5 2 3 2 2 4 1 5 1 2 2 2 3 5 4 4 2 2
#> [24157] 4 1 5 3 4 5 3 3 5 5 2 1 1 5 4 1 4 1 3 3 5 2 1 4 1 4 2 2 3 3 5 3 5 3 4 2
#> [24193] 3 3 2 2 4 1 4 5 2 2 4 3 5 1 5 2 2 2 1 5 5 4 5 4 2 2 5 5 4 4 2 2 4 2 4 4
#> [24229] 3 5 4 2 2 3 3 4 5 5 5 4 5 3 1 3 2 2 2 3 1 4 4 2 2 2 4 2 5 5 2 1 4 1 3 4
#> [24265] 2 3 2 2 1 2 2 2 2 4 2 2 2 2 4 5 2 3 4 5 5 3 5 2 4 2 3 3 2 3 2 3 2 2 2 4
#> [24301] 2 3 3 2 2 4 5 2 2 2 2 1 2 4 4 4 2 3 1 2 5 3 1 1 1 2 2 3 3 2 2 2 4 4 2 2
#> [24337] 3 2 2 3 1 2 2 2 1 3 1 3 2 3 1 3 4 2 4 5 2 5 4 2 3 3 2 4 3 2 5 3 5 2 5 1
#> [24373] 2 5 2 2 3 1 2 4 2 4 2 2 2 2 1 5 4 1 2 2 5 3 2 3 5 4 2 2 2 2 2 4 3 2 4 3
#> [24409] 2 3 3 4 5 5 2 2 2 3 4 2 5 5 2 2 2 5 3 2 1 3 2 2 4 5 2 3 5 4 2 2 5 5 1 3
#> [24445] 3 4 5 3 2 1 1 3 2 2 2 3 5 4 5 3 3 2 3 4 5 2 2 1 3 5 2 1 3 2 2 3 2 5 3 2
#> [24481] 5 2 2 4 4 3 3 4 2 1 3 1 4 4 2 1 2 3 3 1 3 4 3 2 2 5 2 2 3 4 4 1 2 4 2 2
#> [24517] 2 1 2 5 2 1 2 3 2 2 3 5 3 2 3 5 4 2 3 2 2 2 2 3 3 2 5 2 4 4 5 4 1 2 2 3
#> [24553] 2 1 2 5 2 3 1 2 4 3 2 1 5 5 2 1 2 2 5 3 3 3 2 5 4 2 2 3 4 3 5 3 2 4 3 2
#> [24589] 3 2 2 2 4 2 2 5 3 1 2 4 2 2 4 4 3 2 3 2 2 1 2 2 3 5 2 3 3 4 2 2 2 4 2 2
#> [24625] 3 2 2 2 2 1 1 3 5 5 2 4 2 2 4 2 3 4 2 1 5 3 3 4 3 2 3 2 2 1 1 1 3 3 4 2
#> [24661] 3 3 3 3 4 2 2 1 2 1 2 3 1 2 1 5 5 5 2 3 2 1 3 2 3 2 3 1 4 2 3 2 3 2 2 2
#> [24697] 2 2 3 3 2 3 5 3 5 3 5 5 3 3 2 5 2 4 2 2 5 5 4 5 1 1 3 1 4 1 3 2 2 2 1 5
#> [24733] 2 2 2 5 3 1 2 2 2 3 4 2 3 5 5 5 4 5 5 4 2 1 5 2 2 5 4 3 1 2 3 1 2 3 2 5
#> [24769] 1 3 1 4 2 3 2 5 5 4 2 5 2 2 4 3 3 3 2 1 3 2 3 3 1 2 1 2 5 3 5 2 2 5 1 1
#> [24805] 2 3 4 3 3 3 2 3 3 2 2 1 3 2 1 5 5 5 3 2 5 5 3 3 5 2 2 4 4 1 4 5 3 2 4 3
#> [24841] 4 4 1 5 1 3 5 5 5 5 2 5 4 2 5 2 3 3 2 2 2 2 2 1 4 1 3 3 1 4 3 3 5 3 3 3
#> [24877] 5 4 5 3 2 3 3 1 2 3 4 4 2 2 2 2 3 1 5 2 5 4 4 3 1 4 4 5 4 2 2 1 2 2 2 3
#> [24913] 3 2 1 4 3 3 3 3 2 3 4 1 4 5 5 2 1 2 5 5 2 5 2 5 2 2 4 2 5 2 5 2 5 3 3 4
#> [24949] 2 4 1 2 4 2 3 3 1 5 1 1 2 2 2 2 3 2 2 1 1 2 3 2 2 4 3 2 5 3 5 1 5 1 2 3
#> [24985] 2 5 3 2 4 5 3 2 1 5 2 3 2 2 1 1 3 2 1 3 3 5 5 2 5 3 2 4 4 2 2 1 1 2 2 5
#> [25021] 2 2 2 3 3 2 2 2 3 3 3 2 2 2 1 1 5 3 5 5 5 4 4 2 2 1 2 4 2 2 2 5 4 3 5 4
#> [25057] 2 5 3 2 3 3 2 3 4 4 3 4 3 2 2 2 2 1 5 3 3 3 1 3 2 3 3 2 2 4 2 2 1 2 3 5
#> [25093] 3 3 4 4 5 5 2 4 5 5 2 5 2 5 3 2 5 4 5 2 3 2 4 2 2 1 5 3 2 5 5 2 2 5 1 2
#> [25129] 5 4 2 4 3 2 2 4 2 5 2 4 5 3 3 4 4 2 3 3 2 2 1 1 3 1 2 1 2 3 2 2 5 5 1 2
#> [25165] 2 1 5 2 4 2 5 4 5 2 5 2 4 2 4 1 5 2 2 2 5 2 2 2 5 3 2 1 2 2 2 3 5 5 3 4
#> [25201] 5 2 4 4 3 3 2 1 2 5 2 2 5 2 1 3 5 3 2 4 1 1 2 2 3 5 3 1 4 2 2 4 2 1 4 5
#> [25237] 2 3 3 3 4 2 2 2 1 5 2 1 3 2 3 3 2 2 2 3 2 1 2 1 3 3 5 2 2 5 2 1 3 3 2 5
#> [25273] 2 2 4 1 3 2 2 4 2 2 2 2 2 5 4 1 2 2 5 3 2 2 2 2 2 4 3 5 5 4 5 2 3 3 2 1
#> [25309] 1 1 2 5 2 4 4 4 3 3 4 2 3 2 5 1 2 2 3 2 1 5 5 3 1 1 4 3 3 4 2 5 1 5 3 2
#> [25345] 2 2 4 4 2 2 2 3 4 2 2 3 2 2 2 2 2 2 1 2 2 2 3 3 2 2 3 5 5 5 3 2 2 5 2 2
#> [25381] 2 2 1 2 5 5 2 2 2 3 4 2 2 5 5 2 3 5 4 1 3 5 3 2 2 3 3 2 1 4 2 2 4 4 2 2
#> [25417] 5 1 2 5 2 3 3 2 3 4 2 5 4 5 4 3 1 3 2 3 3 2 3 4 4 2 3 3 3 4 2 5 1 3 3 3
#> [25453] 5 3 2 2 2 3 3 1 1 2 3 2 5 2 4 2 1 2 2 2 4 1 1 2 5 2 4 5 2 5 2 4 3 3 2 4
#> [25489] 3 1 2 5 2 2 3 2 1 2 2 1 5 4 2 3 2 2 4 4 5 2 4 5 5 4 3 2 1 2 5 4 2 1 5 5
#> [25525] 2 3 2 2 2 5 2 5 3 3 1 2 3 5 1 2 4 2 2 1 1 2 5 1 2 5 5 2 1 2 3 2 3 2 4 1
#> [25561] 5 3 2 3 4 5 1 3 5 5 5 2 1 3 3 2 5 5 2 3 5 5 2 3 3 1 5 1 5 5 2 2 2 2 5 1
#> [25597] 4 3 1 1 2 5 2 2 4 2 3 3 3 2 2 5 2 1 2 5 3 2 3 5 2 2 2 1 2 3 2 1 2 2 2 2
#> [25633] 1 5 4 5 4 3 1 4 4 2 5 3 3 3 3 2 3 3 2 1 2 3 2 2 3 3 3 3 2 1 4 3 1 1 3 2
#> [25669] 4 2 5 3 2 5 3 2 2 5 4 2 2 5 2 3 4 5 2 2 2 4 5 1 1 1 2 4 3 5 3 3 3 1 2 3
#> [25705] 2 3 2 2 5 2 2 2 1 3 2 5 1 2 5 1 5 2 5 3 3 2 1 3 3 2 1 3 2 2 5 2 4 1 5 3
#> [25741] 3 2 3 3 1 1 2 5 2 3 1 2 2 5 2 1 2 2 5 2 5 3 5 4 2 5 2 1 5 5 3 1 1 3 5 2
#> [25777] 2 2 1 3 2 5 5 3 3 1 4 1 5 2 2 2 3 3 2 5 1 1 2 5 2 2 1 2 2 4 4 1 3 2 2 2
#> [25813] 2 4 5 3 1 2 1 4 4 2 2 2 4 3 2 3 1 2 2 2 2 2 1 1 2 5 1 3 3 5 2 4 2 3 3 5
#> [25849] 5 2 2 2 3 1 1 1 2 1 1 4 2 3 1 4 3 3 3 1 5 2 1 3 3 2 2 3 2 2 5 2 2 1 3 3
#> [25885] 3 3 4 4 3 4 1 3 3 3 1 4 1 2 1 4 5 5 2 2 1 2 2 2 2 3 3 5 2 4 3 2 4 3 2 4
#> [25921] 1 4 2 1 2 2 1 2 3 4 2 5 3 2 2 2 2 4 1 5 5 3 2 3 5 4 3 5 4 1 4 3 2 3 5 1
#> [25957] 4 3 3 2 2 1 4 1 2 2 2 2 2 4 2 2 3 3 2 2 2 2 1 2 1 5 3 5 1 3 5 1 2 3 2 4
#> [25993] 4 3 3 2 3 1 5 3 4 5 2 3 2 1 4 5 2 3 4 2 2 2 3 1 2 5 2 1 4 3 4 2 2 3 2 4
#> [26029] 2 2 4 2 5 3 1 3 5 2 3 4 5 2 2 2 1 3 3 1 1 5 5 1 5 5 5 5 2 1 3 2 1 1 5 1
#> [26065] 3 5 2 2 2 1 3 2 1 5 2 2 2 5 3 2 2 1 4 3 3 1 4 2 5 5 5 3 2 2 2 2 2 2 5 1
#> [26101] 2 3 5 2 1 2 3 2 1 3 2 3 2 2 2 3 4 5 2 4 2 5 3 3 2 1 2 2 5 2 2 1 5 4 2 5
#> [26137] 2 5 2 4 4 2 2 5 2 5 2 2 4 1 3 1 3 2 1 3 2 1 2 4 2 5 3 3 2 5 2 2 3 5 3 4
#> [26173] 5 4 3 4 4 3 2 5 5 2 2 5 2 5 4 4 3 2 1 3 5 2 2 5 1 5 4 4 3 4 5 4 2 1 2 1
#> [26209] 3 5 2 2 2 2 2 2 2 5 1 2 3 4 3 3 2 2 2 5 3 2 3 4 2 3 3 1 2 2 3 4 2 1 3 4
#> [26245] 2 2 1 3 5 1 2 2 2 3 1 2 3 3 3 2 2 4 3 2 4 2 2 3 2 2 3 2 2 5 4 2 2 1 2 4
#> [26281] 2 1 2 2 1 2 2 1 3 3 3 5 3 3 3 4 5 5 4 2 5 1 1 5 2 4 2 2 5 2 3 3 5 2 2 2
#> [26317] 1 2 2 2 4 3 2 4 4 4 2 3 2 3 4 5 1 2 2 3 5 2 2 2 2 2 2 1 3 1 1 1 5 2 2 2
#> [26353] 3 5 2 2 4 3 3 2 5 3 2 3 2 5 4 2 2 2 1 1 1 3 2 3 2 3 2 2 2 2 3 2 2 3 2 1
#> [26389] 3 3 1 2 2 3 4 5 3 2 3 2 5 3 2 3 4 2 2 3 2 5 2 5 2 3 2 2 2 2 1 2 2 3 5 3
#> [26425] 2 4 2 3 2 5 1 1 3 3 3 2 2 2 4 5 5 2 1 2 2 5 4 2 4 2 3 2 4 4 3 3 2 2 2 2
#> [26461] 2 2 3 5 4 4 5 2 2 2 5 5 5 2 4 2 2 3 5 3 3 2 2 2 4 2 3 1 2 2 1 2 5 4 1 3
#> [26497] 5 3 2 5 2 3 2 2 2 2 3 1 4 2 1 2 5 5 2 3 1 3 2 2 5 3 2 3 2 4 2 3 5 5 5 4
#> [26533] 2 2 4 3 3 2 3 3 1 2 3 1 1 1 2 3 4 2 2 5 1 3 2 1 1 2 2 4 2 3 3 5 2 3 4 5
#> [26569] 1 3 2 3 4 2 5 5 5 3 1 3 2 4 2 3 5 2 4 2 5 3 5 2 5 4 4 2 5 2 1 5 5 3 1 2
#> [26605] 5 2 2 3 1 4 3 2 4 4 2 3 5 4 5 4 2 5 5 4 2 5 1 2 2 3 2 5 2 2 2 2 4 4 3 3
#> [26641] 5 2 2 2 1 3 2 1 1 3 1 5 1 2 2 5 1 2 2 5 5 3 2 2 3 1 2 2 5 3 5 3 4 2 5 3
#> [26677] 3 3 2 2 2 4 1 2 2 3 5 2 1 5 5 3 5 5 2 3 5 1 1 2 1 5 1 5 5 1 1 5 1 2 1 2
#> [26713] 2 1 3 1 2 2 5 2 5 2 3 1 2 2 2 4 5 2 5 2 2 1 2 2 3 2 3 5 3 2 2 5 5 3 2 1
#> [26749] 5 3 2 2 3 1 5 3 5 5 2 2 2 2 2 1 3 2 5 1 5 2 2 2 2 3 4 2 1 1 2 1 4 3 1 1
#> [26785] 2 2 5 2 2 3 2 2 2 5 5 1 1 1 2 4 2 5 1 1 5 2 3 5 2 2 1 2 3 2 3 4 2 4 4 2
#> [26821] 2 2 2 4 2 2 5 2 2 3 2 2 5 1 2 4 3 4 3 4 4 2 5 3 2 3 3 1 4 2 2 1 3 2 2 1
#> [26857] 5 2 5 3 4 3 2 5 5 4 3 3 3 3 4 2 5 4 3 3 2 4 2 5 3 5 2 2 3 2 1 5 5 5 1 5
#> [26893] 3 4 2 3 2 2 3 3 1 5 3 1 3 2 2 5 2 1 3 2 2 3 3 5 5 5 4 2 5 3 1 4 2 2 2 2
#> [26929] 1 2 5 4 2 1 2 5 3 2 2 1 4 2 2 4 2 2 2 3 2 2 4 4 3 2 2 2 3 2 2 5 5 4 3 4
#> [26965] 5 2 3 2 4 2 2 5 1 2 2 4 1 2 2 1 2 1 4 2 2 5 2 3 1 2 5 2 3 5 5 2 1 3 2 4
#> [27001] 3 2 5 5 4 2 2 2 3 5 2 2 5 4 2 5 3 5 4 4 2 3 3 2 4 4 2 5 5 1 5 2 2 2 2 3
#> [27037] 5 1 3 5 1 1 1 2 5 2 5 5 5 5 3 2 4 2 2 5 3 1 1 2 3 4 2 2 2 2 2 2 2 2 1 5
#> [27073] 2 3 3 2 3 5 3 1 2 2 4 3 5 3 4 5 2 2 2 2 5 2 5 5 2 2 4 4 1 2 5 4 3 3 3 1
#> [27109] 1 3 2 2 1 5 1 5 2 5 2 2 1 2 1 1 3 2 2 3 3 2 2 3 1 1 5 5 2 2 2 2 2 3 3 4
#> [27145] 2 2 2 3 3 2 5 2 3 3 5 2 2 5 3 4 2 1 1 3 2 5 2 2 1 2 2 2 2 4 2 2 3 1 3 5
#> [27181] 1 1 4 1 1 1 2 3 1 2 1 2 4 2 1 3 2 5 4 3 3 4 2 2 3 3 5 2 2 1 2 3 5 4 1 2
#> [27217] 2 3 2 2 1 2 4 2 1 2 2 5 2 3 2 3 4 2 1 2 2 3 2 2 1 2 3 3 5 5 2 5 3 5 1 5
#> [27253] 5 3 1 1 3 3 5 2 5 2 3 2 2 1 5 5 3 3 2 4 2 2 4 2 2 2 2 5 2 2 2 3 3 2 2 4
#> [27289] 5 2 2 3 3 4 2 1 2 5 2 3 1 2 2 2 4 2 3 3 5 2 2 1 1 5 2 2 2 1 2 2 2 3 3 4
#> [27325] 5 3 2 3 1 2 4 2 5 2 2 2 2 2 2 2 2 5 2 1 5 5 2 5 2 1 1 2 4 2 1 2 1 5 2 2
#> [27361] 3 2 4 2 5 1 3 2 5 2 5 3 2 5 2 2 3 5 2 3 1 3 2 3 2 3 2 4 2 2 2 2 3 3 5 3
#> [27397] 5 2 2 5 1 3 5 3 2 2 5 3 2 5 5 2 2 2 4 2 2 3 1 3 2 5 4 2 2 3 2 3 4 1 4 1
#> [27433] 1 5 3 3 2 4 2 3 2 4 2 3 1 2 3 1 2 2 4 2 3 3 1 2 2 1 5 5 4 2 5 4 2 4 5 2
#> [27469] 4 3 2 1 2 5 4 3 2 5 5 5 3 2 4 2 5 3 3 1 3 1 3 5 4 1 2 1 2 2 5 4 3 1 5 5
#> [27505] 3 2 3 2 2 1 3 2 2 2 4 4 3 3 2 3 5 5 5 3 5 2 5 5 1 5 3 2 5 5 5 2 3 5 2 2
#> [27541] 3 3 3 3 3 1 1 5 3 1 4 1 3 5 3 1 3 1 3 5 4 3 2 2 5 2 1 2 5 2 3 4 3 2 2 2
#> [27577] 3 4 2 2 5 2 2 3 5 1 5 5 2 3 4 1 2 2 1 4 1 3 5 2 5 2 5 3 3 2 3 5 4 4 1 5
#> [27613] 3 2 2 5 3 1 4 2 2 2 5 4 2 2 5 2 4 2 3 1 1 5 2 2 2 3 2 2 1 1 2 2 3 3 5 2
#> [27649] 3 1 5 4 3 1 4 4 2 2 4 1 3 4 3 3 3 2 2 5 4 3 5 5 5 5 1 2 3 3 4 2 5 5 5 5
#> [27685] 5 2 2 4 4 3 5 2 2 2 5 3 2 5 1 2 2 2 5 2 3 2 5 4 5 5 4 3 5 4 5 3 2 2 1 2
#> [27721] 1 2 2 5 1 2 3 3 5 2 2 2 4 5 2 2 1 1 2 1 5 3 2 1 4 2 3 5 3 1 2 3 5 1 5 3
#> [27757] 3 5 2 1 2 2 5 2 1 1 3 2 5 5 3 3 2 1 2 3 2 5 2 2 4 3 1 3 2 2 2 2 5 2 5 5
#> [27793] 2 3 2 5 2 3 4 2 5 1 2 2 2 3 5 1 5 2 2 3 2 3 2 3 5 5 4 2 4 1 1 3 2 2 2 4
#> [27829] 3 3 3 2 5 5 2 1 3 3 2 4 5 2 3 2 2 2 3 2 5 2 2 3 4 5 3 2 2 1 3 2 2 2 5 3
#> [27865] 2 5 1 1 2 1 2 3 4 4 2 2 3 3 5 5 3 2 2 3 1 4 5 2 5 3 3 3 3 2 2 4 5 2 2 5
#> [27901] 2 1 1 2 3 5 3 1 2 2 1 3 2 3 4 3 2 2 1 3 1 2 4 2 2 3 4 1 3 3 5 1 3 2 3 2
#> [27937] 2 3 2 4 1 2 1 4 1 2 3 5 2 2 4 3 4 2 2 5 1 4 5 2 4 4 5 1 3 5 4 2 5 3 1 4
#> [27973] 3 5 2 1 3 4 5 3 2 1 1 3 2 5 3 4 4 5 2 4 1 2 2 1 2 2 1 2 2 4 3 5 4 2 4 2
#> [28009] 5 1 2 2 3 2 1 3 2 2 4 2 4 5 4 1 5 3 2 5 3 2 2 3 2 4 2 2 5 1 3 5 4 3 2 2
#> [28045] 4 2 2 1 2 2 2 2 5 2 3 2 2 5 1 1 2 5 5 3 5 3 1 2 2 2 2 2 2 2 3 2 4 2 2 2
#> [28081] 2 2 2 2 5 2 3 3 5 1 3 3 5 5 3 1 2 2 2 3 2 2 2 2 2 2 5 2 2 3 2 3 2 2 2 2
#> [28117] 1 5 3 2 2 3 1 1 2 2 2 2 4 2 2 1 1 1 3 2 4 2 3 5 3 2 2 2 5 5 4 3 3 5 5 2
#> [28153] 2 3 2 2 5 3 5 3 5 3 3 3 5 5 2 2 5 3 2 2 2 2 1 2 2 1 1 3 3 3 5 2 4 3 2 3
#> [28189] 2 3 4 5 3 2 1 3 2 1 5 5 2 3 1 1 5 2 1 2 2 1 5 5 2 1 2 3 2 5 1 3 2 2 5 2
#> [28225] 2 2 2 2 2 5 2 4 3 3 3 2 2 5 2 2 4 2 5 5 2 1 1 5 3 3 4 3 3 4 2 2 3 2 4 3
#> [28261] 1 2 5 3 2 4 1 2 2 5 2 2 2 1 2 2 4 5 5 2 5 3 5 5 2 3 5 5 4 3 3 2 5 2 2 3
#> [28297] 1 5 5 4 2 2 2 3 5 5 1 5 3 2 3 3 2 3 3 5 3 2 3 2 5 2 1 2 2 2 1 2 2 3 1 1
#> [28333] 1 2 4 3 4 2 5 3 2 5 2 2 2 2 2 2 2 2 3 3 4 3 2 5 5 3 1 5 5 2 3 4 2 3 2 3
#> [28369] 5 5 2 3 3 5 3 3 4 4 2 1 1 2 1 2 3 3 3 3 5 5 2 2 2 2 2 2 5 5 4 4 2 2 5 2
#> [28405] 5 3 2 5 2 2 2 2 2 2 5 1 2 5 5 4 1 2 1 3 1 2 3 2 2 2 5 5 5 2 2 2 1 3 2 2
#> [28441] 3 2 3 3 5 2 3 4 3 1 5 4 5 3 2 2 2 5 3 3 2 1 3 1 4 3 5 5 2 3 1 2 2 2 2 2
#> [28477] 3 5 3 4 2 5 3 1 5 2 1 1 3 3 2 2 5 1 4 1 3 1 1 5 3 2 5 5 5 3 2 1 2 1 3 5
#> [28513] 1 4 2 2 3 4 2 3 5 1 2 4 3 5 2 2 2 2 5 3 2 1 1 2 5 2 5 4 5 1 2 3 4 1 2 1
#> [28549] 2 4 2 1 5 2 3 2 3 1 3 5 2 3 2 4 3 5 2 2 5 3 1 5 4 2 1 3 1 2 2 2 4 2 5 4
#> [28585] 2 2 2 3 3 3 2 4 5 4 1 3 5 2 2 1 1 3 2 2 5 2 1 2 2 3 5 5 2 3 1 2 2 2 2 1
#> [28621] 2 5 2 2 2 5 4 2 3 3 1 2 3 4 2 1 3 4 4 2 5 1 3 3 2 3 3 5 2 1 1 2 4 2 4 2
#> [28657] 1 2 2 5 5 2 1 2 2 1 5 5 2 3 5 2 3 3 3 1 2 5 1 5 1 4 5 4 3 2 1 1 4 3 2 3
#> [28693] 2 1 1 3 2 5 4 2 5 2 2 4 1 2 4 3 4 2 3 2 5 5 2 4 2 1 3 3 4 3 2 3 3 2 2 2
#> [28729] 2 5 5 4 1 3 3 1 5 2 2 5 2 2 2 3 3 2 1 2 5 2 2 4 3 2 3 2 1 4 4 5 3 1 2 4
#> [28765] 3 4 2 3 1 2 2 3 5 5 5 3 5 5 5 2 1 5 1 2 2 1 5 5 2 1 5 2 3 1 1 3 3 3 2 1
#> [28801] 2 5 4 4 2 1 2 5 2 3 2 1 2 1 3 1 3 5 2 3 3 2 1 1 5 5 2 5 2 4 4 2 2 4 3 2
#> [28837] 5 4 2 3 5 1 5 5 5 2 2 2 3 5 2 3 1 5 1 2 5 2 3 2 5 2 4 4 2 5 5 3 1 3 2 1
#> [28873] 2 2 5 3 3 5 5 5 1 2 3 3 3 2 2 2 2 1 4 5 3 1 3 2 3 2 3 1 4 2 5 3 2 2 2 3
#> [28909] 2 2 1 2 4 2 2 3 5 4 4 2 2 2 5 1 5 3 5 3 1 5 3 4 4 2 3 5 2 2 1 1 5 2 5 4
#> [28945] 4 1 4 1 5 3 3 2 3 3 3 3 1 2 3 5 3 3 4 2 3 1 5 2 4 2 2 1 4 2 2 2 3 3 2 4
#> [28981] 2 2 2 2 3 2 5 1 4 3 3 4 1 2 5 1 2 1 5 3 2 1 3 2 2 2 2 2 2 2 3 2 4 3 4 3
#> [29017] 3 4 2 2 1 2 4 5 3 3 5 3 2 3 2 2 1 4 2 5 3 4 1 5 2 2 2 5 2 2 3 1 1 5 2 2
#> [29053] 3 1 3 5 2 2 1 1 1 3 1 3 1 5 1 5 5 2 5 2 1 5 3 1 2 3 4 1 3 3 3 5 5 3 3 1
#> [29089] 2 5 3 2 2 1 3 4 2 4 2 1 5 1 5 4 2 3 2 1 5 2 1 4 2 2 1 2 5 3 2 2 1 3 2 4
#> [29125] 2 3 2 2 3 3 2 4 2 5 4 2 4 5 2 3 4 3 4 3 2 5 4 2 5 2 2 1 1 4 5 4 5 2 2 3
#> [29161] 4 2 4 2 4 3 3 5 5 2 3 5 1 5 2 2 2 2 3 5 1 2 4 3 2 2 2 2 4 3 2 2 1 1 1 2
#> [29197] 4 2 1 4 2 5 2 5 2 2 4 2 2 2 3 2 2 2 1 2 4 1 2 1 2 2 2 1 2 3 2 3 4 3 3 2
#> [29233] 3 2 2 4 2 2 5 3 2 2 2 4 3 4 2 2 2 1 2 2 4 4 4 2 3 3 5 4 2 3 2 2 2 5 5 4
#> [29269] 3 5 5 2 5 1 4 5 2 2 2 3 2 2 2 5 2 2 4 2 3 3 3 3 3 5 4 1 2 2 1 2 2 2 5 2
#> [29305] 2 3 2 5 2 2 4 3 3 2 2 2 2 2 3 5 2 5 2 2 2 5 1 5 5 4 2 2 2 2 3 3 2 1 2 2
#> [29341] 2 2 2 5 3 2 2 4 2 3 5 2 3 1 1 3 3 2 2 2 3 2 5 2 2 2 3 1 3 1 5 5 5 3 2 4
#> [29377] 2 3 3 3 4 2 3 2 3 3 2 3 3 3 1 1 2 4 2 4 2 4 3 2 5 1 4 3 3 5 1 2 3 1 2 3
#> [29413] 2 5 4 2 3 3 2 5 2 2 5 1 2 1 3 5 2 2 3 2 2 2 5 3 1 2 2 2 1 4 4 5 1 2 2 2
#> [29449] 5 1 5 2 5 1 2 3 2 1 2 2 2 3 5 2 4 2 3 3 3 1 2 4 2 3 3 3 3 2 5 2 3 4 1 4
#> [29485] 2 4 3 2 1 3 2 2 2 1 1 5 1 1 5 2 3 4 1 2 4 4 3 5 1 3 3 2 1 2 3 4 2 2 2 1
#> [29521] 5 3 5 2 5 4 3 3 2 2 1 5 2 3 5 2 3 1 3 2 3 5 3 5 2 2 2 1 2 4 4 4 4 3 2 4
#> [29557] 1 2 3 5 3 3 2 2 2 2 2 2 5 4 2 3 3 2 5 2 1 2 2 5 3 5 2 1 2 2 5 3 5 2 1 2
#> [29593] 1 3 2 1 1 4 5 2 5 2 5 2 4 2 2 2 2 4 3 3 2 5 5 1 1 2 2 3 4 5 1 4 2 2 2 3
#> [29629] 3 2 3 2 3 1 4 3 2 5 3 5 2 1 1 2 2 2 2 3 5 1 5 3 4 5 3 4 3 2 2 2 4 2 1 2
#> [29665] 1 5 2 5 3 2 5 5 2 1 2 2 2 3 3 5 3 3 1 5 2 5 4 2 1 2 4 2 5 5 1 5 2 3 2 1
#> [29701] 1 1 4 2 5 2 5 2 2 4 4 5 4 1 1 5 2 1 4 2 2 1 5 3 4 2 2 2 1 2 3 3 4 5 1 3
#> [29737] 2 5 2 2 4 2 4 2 1 3 2 4 2 2 3 1 2 5 3 2 2 3 2 3 3 2 2 2 2 5 4 2 2 3 1 1
#> [29773] 4 4 5 2 1 3 2 4 5 2 1 1 2 5 3 1 5 2 1 3 2 4 1 3 4 3 3 1 5 2 5 4 5 2 3 4
#> [29809] 3 1 5 5 1 4 2 2 1 3 5 2 3 1 5 1 4 2 2 3 2 1 5 1 5 2 3 5 2 4 1 1 5 4 5 5
#> [29845] 2 2 5 1 4 1 4 4 3 3 2 2 2 4 1 1 3 1 5 1 2 3 4 2 4 5 2 2 2 2 2 2 2 2 1 4
#> [29881] 3 3 3 1 3 3 2 5 1 5 1 4 2 2 1 1 1 4 4 4 2 4 3 4 1 5 5 1 1 5 2 3 3 5 2 1
#> [29917] 2 4 4 4 5 1 3 2 5 4 5 2 2 2 2 3 3 3 2 5 2 5 5 5 4 4 2 2 5 2 3 2 5 3 5 5
#> [29953] 5 4 4 4 5 5 3 2 2 3 3 2 1 2 4 1 1 1 1 1 1 4 4 4 2 4 5 5 2 3 2 2 3 1 3 2
#> [29989] 3 1 5 1 3 2 4 4 3 2 2 5 3 5 2 2 2 2 1 2 2 2 4 3 3 4 1 1 5 2 5 5 3 4 3 3
#> [30025] 3 5 3 3 3 3 1 1 5 5 4 5 3 1 5 2 2 4 5 2 2 2 2 1 2 3 3 2 2 2 1 2 3 2 2 2
#> [30061] 5 4 1 5 3 1 5 3 2 2 4 5 2 5 2 3 5 2 3 3 1 2 2 5 3 2 2 4 3 5 4 2 1 3 5 3
#> [30097] 2 2 3 2 2 3 3 3 2 3 2 3 2 1 2 2 5 1 2 4 4 5 2 3 5 3 2 5 3 2 2 3 2 5 5 4
#> [30133] 5 4 2 2 4 2 5 1 3 3 3 3 3 2 2 2 4 5 5 5 1 4 2 2 4 3 2 5 3 1 4 2 2 2 2 1
#> [30169] 5 3 2 5 5 5 1 1 2 5 5 2 1 2 5 1 2 2 4 1 5 5 1 2 2 3 1 3 3 5 5 3 5 2 3 2
#> [30205] 3 2 1 5 5 2 1 2 2 3 3 2 4 2 3 2 4 5 2 2 4 2 3 5 2 2 2 3 5 3 2 3 1 2 3 2
#> [30241] 2 5 3 1 1 2 2 3 3 2 3 1 1 2 5 1 2 2 2 4 2 3 5 3 5 5 3 2 1 2 3 2 4 3 2 5
#> [30277] 2 1 1 5 2 4 2 2 2 2 2 3 1 2 2 2 2 3 2 4 2 3 2 3 2 4 5 3 3 2 2 3 5 3 4 2
#> [30313] 5 2 4 4 5 3 4 4 2 2 2 3 3 2 3 4 3 3 3 3 4 2 2 1 3 4 2 4 1 4 1 5 2 3 1 1
#> [30349] 2 3 5 5 4 2 1 3 2 1 3 2 1 5 2 3 3 5 2 5 2 2 2 2 3 2 3 5 2 2 2 2 2 2 1 3
#> [30385] 4 5 1 4 1 2 1 1 2 3 1 5 3 4 2 1 2 5 3 1 3 5 1 2 3 5 4 1 2 2 3 1 5 2 2 2
#> [30421] 2 5 3 4 5 2 2 4 3 2 3 5 1 2 5 2 3 4 5 1 1 3 4 4 3 5 5 3 3 5 1 5 5 2 2 2
#> [30457] 3 2 3 3 2 5 1 4 2 2 2 5 3 5 3 5 3 5 2 2 2 2 4 2 2 4 5 2 5 2 3 1 4 2 2 3
#> [30493] 5 1 5 2 2 2 1 1 2 2 2 2 3 3 3 1 1 1 2 3 2 2 4 5 5 4 2 2 2 5 1 5 3 4 3 2
#> [30529] 3 3 4 4 3 5 4 4 2 1 5 2 5 2 4 2 2 5 3 2 2 1 3 4 2 3 5 2 2 2 5 3 2 5 5 2
#> [30565] 2 4 4 3 3 3 2 3 3 4 2 5 1 2 2 2 2 1 3 2 2 1 5 3 1 2 1 5 2 3 2 1 3 4 3 1
#> [30601] 5 3 1 2 1 1 2 5 1 2 5 2 4 4 2 3 2 2 4 4 2 2 3 2 1 5 1 2 3 5 1 1 2 3 2 4
#> [30637] 2 4 1 4 3 5 3 2 2 2 1 2 2 1 2 2 3 2 2 2 3 3 2 2 2 1 3 2 5 2 2 2 5 2 1 2
#> [30673] 5 2 2 3 2 2 2 2 2 4 2 2 3 4 1 4 2 5 3 3 3 2 5 3 5 2 5 2 4 2 3 2 4 1 1 2
#> [30709] 1 2 3 2 5 1 3 2 2 3 1 5 2 5 3 2 2 1 3 1 2 2 2 3 3 2 4 3 2 3 5 5 2 3 2 5
#> [30745] 1 2 5 2 2 3 5 1 2 3 1 1 3 3 2 4 5 4 1 1 3 1 5 3 2 2 2 5 2 2 3 4 3 3 2 1
#> [30781] 3 2 4 5 1 2 2 3 2 2 2 3 2 1 5 2 2 5 2 4 5 2 1 2 2 2 3 3 4 3 2 3 3 1 2 5
#> [30817] 2 3 5 5 3 5 5 2 1 4 1 2 3 4 2 2 2 1 3 2 5 5 2 2 2 2 2 2 1 3 5 4 4 3 2 5
#> [30853] 1 2 2 1 3 2 3 1 2 4 2 5 3 5 5 3 3 2 3 2 3 2 1 2 2 3 2 3 4 5 3 2 2 3 1 2
#> [30889] 1 1 2 2 3 4 3 1 5 2 2 5 2 4 2 4 2 3 1 4 2 3 3 5 5 3 1 2 1 3 3 4 4 2 2 3
#> [30925] 2 1 3 5 5 3 3 4 2 2 2 1 5 3 1 2 3 2 5 5 3 3 3 4 1 3 1 2 4 4 2 2 5 1 5 5
#> [30961] 2 5 2 2 1 3 3 5 5 2 2 2 4 4 2 2 3 2 3 3 1 1 1 2 2 5 4 4 1 2 1 5 2 3 3 2
#> [30997] 3 4 2 2 4 3 2 4 1 2 4 2 3 1 3 3 2 2 2 3 4 4 2 2 3 5 5 5 5 2 2 2 2 2 1 5
#> [31033] 2 5 5 2 3 4 1 1 2 2 3 4 2 2 2 2 4 1 3 5 2 1 3 3 3 5 1 2 1 2 1 2 3 1 3 2
#> [31069] 3 2 3 3 2 2 2 5 2 2 4 2 2 3 3 2 1 2 4 4 2 2 3 1 1 3 5 2 2 2 3 2 2 2 5 5
#> [31105] 2 1 5 2 2 2 3 5 5 4 3 5 4 3 3 2 5 2 2 2 1 2 2 2 5 4 2 5 2 2 5 1 1 3 3 3
#> [31141] 3 1 4 2 4 4 5 4 1 2 4 3 3 2 1 2 5 5 5 5 1 2 2 2 3 2 2 3 1 2 2 2 2 5 2 5
#> [31177] 2 2 5 3 4 2 4 3 1 2 5 4 3 5 2 2 2 3 3 2 2 1 2 1 3 5 2 1 2 2 2 3 2 2 2 4
#> [31213] 2 4 2 3 2 2 5 2 4 2 1 1 4 2 1 1 2 2 2 5 1 4 5 5 5 1 3 2 5 5 5 2 3 4 1 2
#> [31249] 2 2 5 4 2 2 3 2 3 1 1 2 3 1 2 2 1 3 2 5 4 1 2 1 1 4 5 3 2 4 5 2 4 2 1 5
#> [31285] 3 1 2 2 3 2 2 1 2 5 2 2 2 2 1 3 2 4 3 3 5 1 4 3 2 2 1 5 2 3 3 5 3 5 4 1
#> [31321] 5 4 4 3 4 5 1 3 2 4 3 5 3 1 3 1 4 3 2 5 3 1 2 3 1 5 5 1 5 2 5 1 2 5 2 3
#> [31357] 2 3 5 2 2 2 3 1 3 5 2 2 4 2 1 5 1 1 5 1 5 3 3 5 3 5 4 1 2 4 2 2 5 5 2 2
#> [31393] 2 1 2 2 3 1 2 5 3 2 2 2 4 1 2 5 1 2 4 4 2 4 3 5 3 2 5 2 5 3 2 2 4 2 5 2
#> [31429] 2 2 1 2 5 2 5 3 5 1 5 2 2 3 1 3 3 3 2 3 2 3 2 2 1 5 3 1 4 1 2 2 2 1 2 2
#> [31465] 2 3 2 2 2 2 2 3 3 2 2 2 5 5 1 3 3 1 1 5 2 2 5 2 2 2 2 4 4 3 3 1 5 2 2 5
#> [31501] 2 3 2 3 3 1 5 4 3 1 3 3 3 3 3 5 2 4 3 5 5 3 2 3 2 4 3 4 1 5 3 2 2 2 2 3
#> [31537] 2 2 5 2 2 5 3 4 2 3 2 5 5 4 3 4 1 1 3 5 2 1 5 4 5 4 2 2 2 2 3 1 2 1 2 4
#> [31573] 2 2 1 2 3 1 1 5 5 3 3 1 5 5 4 5 4 2 1 5 4 3 4 1 5 5 2 3 4 4 3 5 4 5 2 3
#> [31609] 2 4 5 2 2 4 4 2 1 5 1 3 2 5 2 5 2 5 1 3 3 2 3 4 2 2 2 5 2 2 4 3 3 3 2 5
#> [31645] 2 2 1 2 3 5 2 5 2 2 5 4 5 5 2 4 2 2 2 1 3 1 4 2 2 3 5 5 5 4 1 1 5 2 3 1
#> [31681] 2 3 2 3 4 5 5 3 5 1 2 2 2 3 1 2 5 4 1 2 5 3 3 5 3 1 2 3 1 5 2 5 3 2 3 5
#> [31717] 4 5 4 2 2 1 1 4 4 3 4 3 5 2 2 3 5 4 2 1 3 5 2 4 4 3 4 2 3 3 5 3 2 2 2 3
#> [31753] 3 5 2 3 1 3 2 2 3 2 1 3 2 2 3 1 5 2 1 5 2 1 2 5 3 2 1 5 1 5 5 2 4 2 2 4
#> [31789] 1 2 2 3 5 2 3 3 3 2 4 2 1 5 4 3 2 2 1 3 3 4 1 4 3 5 3 2 3 3 3 4 4 5 4 5
#> [31825] 4 1 5 2 5 2 4 5 5 1 2 4 2 1 5 1 2 4 4 1 2 1 3 4 2 2 1 2 4 1 5 5 2 2 2 2
#> [31861] 2 2 5 4 3 5 3 2 2 5 3 2 2 1 1 2 3 3 3 3 3 3 2 5 2 1 3 3 3 1 2 3 3 5 1 4
#> [31897] 2 2 5 2 3 3 3 3 2 3 2 3 1 3 4 2 4 3 3 5 2 5 2 2 5 2 2 4 2 2 2 5 3 1 1 2
#> [31933] 2 3 3 5 5 5 5 1 4 2 3 2 5 3 1 2 2 2 2 2 1 3 2 1 1 2 4 1 2 2 2 4 4 2 3 5
#> [31969] 1 4 2 3 2 4 3 3 2 2 2 3 5 2 5 2 2 4 2 3 5 5 2 2 1 2 2 1 2 5 1 2 3 1 1 2
#> [32005] 5 2 2 4 3 3 2 3 2 3 1 5 2 4 4 2 5 5 2 3 2 1 1 1 5 3 2 1 2 2 2 2 1 1 2 2
#> [32041] 1 3 3 1 2 3 2 3 3 1 3 2 2 4 3 3 2 3 5 2 2 3 5 5 1 4 2 5 3 2 5 5 1 4 5 1
#> [32077] 3 1 2 5 3 2 2 4 5 2 1 4 2 1 2 1 5 2 2 3 2 2 2 4 2 3 1 2 2 1 1 3 4 5 2 2
#> [32113] 5 5 4 3 1 5 1 1 2 3 1 2 2 2 4 3 2 2 2 4 4 3 5 2 3 3 3 2 2 2 3 1 2 2 3 3
#> [32149] 4 3 2 3 2 2 5 1 3 3 1 2 2 1 2 2 5 5 3 1 2 3 1 1 5 3 2 3 1 2 2 5 2 2 2 5
#> [32185] 3 2 1 2 4 2 2 1 5 3 2 4 2 2 4 4 2 4 2 3 2 4 1 2 3 5 1 2 2 2 2 2 2 4 1 4
#> [32221] 4 1 2 4 5 2 1 3 2 1 4 5 4 3 5 2 1 5 5 4 2 3 2 3 3 2 5 5 1 5 3 3 2 5 4 5
#> [32257] 3 3 1 3 2 1 2 5 2 3 3 5 2 3 4 2 2 2 2 2 2 5 4 3 2 2 1 2 1 2 3 5 2 3 3 3
#> [32293] 2 2 3 3 1 3 2 1 2 2 5 2 4 5 5 2 2 4 2 1 4 2 3 2 2 5 2 2 2 4 2 3 2 4 2 5
#> [32329] 3 3 2 5 3 4 2 2 1 2 3 2 3 4 2 1 3 4 2 5 3 2 1 5 2 2 2 1 2 3 3 3 5 1 3 1
#> [32365] 2 3 5 1 5 3 2 1 5 2 5 2 3 1 5 5 2 2 2 3 1 2 5 4 2 2 3 2 1 2 1 2 2 1 3 2
#> [32401] 2 4 3 5 2 1 5 5 4 4 1 5 4 2 3 4 5 2 2 2 2 1 5 5 4 1 1 2 4 2 3 3 3 1 5 4
#> [32437] 5 5 1 2 2 4 3 3 5 2 2 4 2 5 5 2 5 2 5 1 5 2 5 2 2 5 5 5 4 5 3 2 2 2 1 3
#> [32473] 4 3 2 2 2 1 5 5 2 5 2 3 5 2 5 5 3 5 3 5 2 4 3 2 4 2 2 1 3 2 3 4 5 5 2 2
#> [32509] 2 3 3 3 2 4 4 2 2 1 2 3 5 4 2 1 2 1 2 2 5 2 2 5 5 4 3 1 1 5 2 2 2 2 1 2
#> [32545] 5 3 5 3 2 5 2 3 1 5 2 2 1 2 2 5 2 5 3 2 2 3 3 5 1 4 2 1 2 4 2 1 2 5 4 5
#> [32581] 1 2 2 2 2 3 4 2 2 4 4 2 2 1 3 1 4 3 5 1 2 3 3 5 2 2 5 2 3 4 3 1 5 4 1 2
#> [32617] 4 2 1 2 2 2 2 1 2 2 2 2 5 1 4 3 3 1 4 4 2 3 1 2 2 2 4 2 5 3 1 1 2 2 5 2
#> [32653] 3 2 5 2 5 2 2 2 1 5 5 2 2 2 1 3 4 2 2 5 3 5 3 3 3 2 5 3 2 2 3 3 2 5 3 5
#> [32689] 2 4 5 1 1 1 1 2 5 2 2 3 2 4 2 2 4 3 3 4 2 4 2 5 3 2 2 5 5 1 1 1 5 3 2 2
#> [32725] 3 2 5 3 5 5 1 2 2 2 2 5 3 2 3 3 2 2 2 2 3 2 2 4 3 2 5 2 1 2 3 1 3 4 1 3
#> [32761] 2 1 2 2 2 5 2 2 3 2 3 1 2 1 3 4 2 3 5 5 1 1 2 3 2 1 3 5 1 5 3 2 1 2 2 3
#> [32797] 3 5 3 1 2 2 3 2 1 1 3 3 2 3 5 2 2 2 2 3 1 5 3 5 2 2 5 2 5 3 2 3 2 2 2 1
#> [32833] 5 1 2 4 2 1 2 5 2 2 2 4 5 1 2 2 1 4 2 2 2 2 2 5 3 2 5 4 3 1 2 2 2 4 2 2
#> [32869] 5 2 2 1 2 5 1 3 2 2 3 3 1 1 3 3 5 2 3 3 5 2 4 5 3 3 5 5 1 2 3 4 2 4 4 5
#> [32905] 4 3 1 2 5 1 2 3 2 2 1 2 2 3 2 2 2 3 4 2 2 3 1 2 5 2 5 5 2 2 3 5 3 2 3 4
#> [32941] 2 3 1 3 2 3 2 2 2 4 2 1 3 5 1 4 2 2 1 5 2 4 2 4 2 3 2 3 2 3 3 2 2 2 2 3
#> [32977] 2 2 2 2 4 1 1 5 1 2 3 2 3 5 5 2 2 3 1 1 2 2 2 5 2 3 2 3 2 2 2 3 3 2 3 3
#> [33013] 5 2 3 5 2 3 5 3 3 4 4 2 2 5 1 2 4 3 5 2 1 5 3 2 5 4 4 2 2 5 4 3 4 4 3 1
#> [33049] 2 2 5 1 1 4 1 2 2 5 4 5 3 2 1 4 3 5 3 1 4 2 5 5 2 4 4 3 2 5 1 3 2 2 3 5
#> [33085] 4 3 2 4 2 1 2 1 2 4 1 2 3 2 3 2 3 2 3 2 2 5 1 3 5 2 3 2 2 2 2 2 2 4 5 4
#> [33121] 2 2 2 2 3 5 3 1 3 5 4 4 3 4 3 2 3 2 4 2 5 2 2 2 1 5 2 3 4 5 3 2 4 4 3 2
#> [33157] 2 2 4 2 2 4 3 2 1 3 5 4 5 2 2 2 5 5 4 2 3 5 2 4 1 3 5 3 3 1 5 5 3 3 2 2
#> [33193] 5 5 1 4 2 5 2 3 5 5 3 2 2 5 1 1 2 5 4 1 3 1 4 2 3 4 5 2 2 3 2 2 5 3 2 2
#> [33229] 5 2 1 5 1 2 3 3 4 5 3 2 5 2 3 2 1 2 4 5 1 4 2 2 3 1 2 3 1 4 3 3 4 2 2 5
#> [33265] 2 2 2 1 5 3 2 3 4 2 2 3 3 5 1 2 2 3 1 2 2 3 1 2 3 2 5 3 1 2 2 2 2 3 3 2
#> [33301] 3 5 2 4 2 4 5 3 2 2 3 2 4 3 4 2 5 5 2 3 3 4 1 2 5 1 2 2 2 5 2 3 2 4 2 5
#> [33337] 2 1 3 2 5 2 2 2 2 2 2 2 2 1 3 3 5 3 2 2 5 2 2 2 1 5 1 2 5 1 2 1 3 4 4 2
#> [33373] 1 4 5 2 1 5 3 2 1 4 3 3 4 2 5 2 4 3 3 2 2 2 5 4 5 4 2 1 4 2 5 3 2 2 3 2
#> [33409] 3 2 4 5 3 2 3 3 3 2 5 4 2 2 5 2 5 5 2 1 2 1 4 2 5 2 3 2 2 3 3 2 4 2 3 3
#> [33445] 2 3 2 1 1 3 1 1 2 3 5 3 3 5 4 3 2 1 5 1 5 4 3 2 1 2 5 3 3 1 2 2 1 3 1 1
#> [33481] 3 2 2 4 5 3 3 2 4 5 2 5 2 2 2 3 1 3 4 4 3 2 5 3 2 3 3 1 5 2 2 1 2 2 4 2
#> [33517] 1 1 2 5 4 3 2 4 5 2 2 3 3 3 2 5 4 2 4 4 5 1 4 2 4 2 1 2 2 3 1 3 2 5 2 2
#> [33553] 1 2 2 4 2 5 2 3 2 2 2 5 1 2 4 2 3 2 2 5 3 5 5 5 3 2 4 2 3 3 2 2 2 2 2 1
#> [33589] 1 2 2 2 2 3 3 2 5 2 2 3 2 1 2 2 2 1 2 1 2 5 2 5 3 5 1 5 2 4 3 4 3 4 2 3
#> [33625] 2 5 2 2 5 1 2 2 2 5 2 4 1 4 3 4 2 5 2 2 2 5 5 5 2 3 2 5 2 5 5 4 1 4 4 4
#> [33661] 1 5 4 3 2 1 5 4 4 3 5 2 3 5 4 2 2 1 4 5 2 5 3 4 1 2 2 2 3 2 5 4 5 2 2 3
#> [33697] 2 3 2 3 1 4 1 2 5 5 2 2 2 1 2 3 2 3 1 5 1 5 5 4 2 3 2 2 5 2 3 5 3 4 2 2
#> [33733] 1 2 3 5 3 1 3 2 3 2 1 5 1 3 2 4 3 3 3 5 1 3 1 2 1 2 5 1 3 3 2 2 2 2 4 2
#> [33769] 2 2 2 2 5 2 3 5 3 1 2 1 2 3 2 3 2 1 2 2 5 2 3 2 2 4 2 2 5 3 4 5 5 2 4 2
#> [33805] 5 3 2 3 5 1 4 3 2 4 3 3 4 2 5 2 2 1 2 2 3 1 5 2 2 3 3 3 1 3 2 2 4 2 2 2
#> [33841] 1 3 4 1 3 1 2 2 2 2 2 5 5 3 2 5 4 5 1 1 1 1 2 3 2 2 2 2 5 4 4 2 3 5 5 3
#> [33877] 3 3 2 2 2 2 1 2 4 3 5 5 4 5 2 5 2 3 2 5 2 5 1 2 4 2 2 2 5 2 2 4 4 1 1 2
#> [33913] 1 5 2 5 5 3 2 5 3 5 5 1 3 5 5 2 3 2 2 5 5 5 2 2 1 2 1 2 2 5 2 1 2 2 5 2
#> [33949] 3 5 3 2 2 2 5 3 2 2 2 1 3 2 2 2 3 4 3 2 2 4 2 2 4 3 3 2 2 3 3 3 2 5 5 2
#> [33985] 5 4 5 1 2 5 2 2 3 2 1 1 3 2 2 5 1 4 5 4 5 2 2 4 2 1 1 2 5 2 2 2 2 5 2 4
#> [34021] 1 2 2 1 5 2 5 2 2 4 5 3 2 1 4 1 2 2 1 1 2 5 5 2 2 3 2 2 2 1 2 3 5 1 2 2
#> [34057] 3 2 2 2 4 2 2 2 3 2 3 2 1 2 4 4 4 3 4 5 3 4 4 5 1 1 2 5 5 5 5 2 3 1 5 2
#> [34093] 3 1 2 2 1 5 2 4 1 2 2 2 2 2 2 1 1 5 2 2 4 1 2 2 4 5 1 2 2 5 2 5 2 2 2 2
#> [34129] 3 3 1 3 2 4 3 2 2 2 1 5 4 2 2 3 2 2 1 2 5 2 3 3 2 2 2 2 3 2 5 2 5 4 2 2
#> [34165] 2 3 2 1 5 5 5 2 2 5 2 1 5 4 4 2 2 2 2 3 2 5 2 4 2 2 3 2 2 2 2 2 2 5 2 2
#> [34201] 2 3 3 5 1 2 2 1 2 3 2 2 2 4 1 5 1 3 3 5 2 2 2 2 3 2 1 4 2 2 2 2 5 2 4 2
#> [34237] 3 3 2 4 2 1 2 5 3 1 4 4 2 5 5 2 4 3 4 2 5 1 3 3 2 2 2 3 4 1 2 2 5 5 4 5
#> [34273] 3 2 2 2 4 5 3 4 2 2 4 3 2 2 1 2 1 2 3 4 2 2 5 5 5 5 2 4 2 2 2 2 4 5 3 5
#> [34309] 1 2 5 3 4 5 1 2 4 5 2 2 2 2 3 1 2 2 1 2 5 2 3 1 3 3 3 4 3 5 2 4 5 3 5 5
#> [34345] 2 3 2 4 4 5 5 5 3 3 2 3 3 2 3 1 3 2 2 5 2 2 4 3 2 1 4 1 5 3 2 4 3 3 3 4
#> [34381] 3 3 5 1 3 2 2 2 2 2 1 2 1 1 4 2 3 3 1 5 3 1 5 5 4 2 3 1 3 1 2 4 1 1 3 3
#> [34417] 3 2 2 3 4 2 2 1 2 4 1 2 4 2 2 2 2 2 2 5 1 2 3 1 2 3 1 5 2 4 2 3 2 4 2 3
#> [34453] 2 2 4 2 2 3 2 2 2 4 3 4 5 2 3 2 1 3 4 3 1 2 5 3 4 3 3 5 2 3 3 2 3 4 5 3
#> [34489] 5 2 1 1 5 2 3 2 4 1 5 2 5 1 2 5 3 4 1 4 3 3 3 5 2 1 2 1 2 2 2 1 2 2 5 5
#> [34525] 1 3 1 5 2 1 3 5 4 4 3 2 2 4 4 2 4 2 2 2 5 2 2 2 1 2 2 2 3 2 5 2 2 2 1 5
#> [34561] 4 2 3 4 5 4 2 1 3 2 3 2 2 1 2 5 2 4 2 1 3 5 3 1 2 1 2 5 2 1 1 3 2 1 4 1
#> [34597] 2 2 5 1 3 5 3 2 5 2 1 2 5 2 2 4 5 3 2 3 1 5 4 2 3 2 4 2 2 2 2 2 2 2 1 4
#> [34633] 1 5 5 2 5 2 1 4 4 4 2 2 1 1 1 5 2 3 1 5 5 2 3 2 5 2 3 2 3 5 5 2 4 3 2 2
#> [34669] 1 2 3 1 1 5 2 2 3 2 4 1 2 2 5 2 3 4 2 4 5 2 2 2 2 1 2 3 1 3 2 2 1 2 4 3
#> [34705] 4 3 1 5 4 1 3 1 2 2 3 1 3 5 1 3 2 2 1 5 1 5 4 1 1 3 2 2 5 5 2 4 5 4 2 2
#> [34741] 2 3 2 2 1 2 2 5 5 3 1 2 4 5 1 3 3 4 2 5 2 5 4 1 5 2 2 5 2 4 2 4 5 2 2 3
#> [34777] 2 5 5 1 2 1 2 1 4 1 2 2 1 4 2 3 5 4 3 3 1 2 3 2 4 2 3 2 5 5 5 3 2 5 3 2
#> [34813] 2 3 3 5 5 4 2 1 3 1 4 3 3 2 3 1 2 2 1 2 2 4 1 3 5 3 3 3 5 2 4 4 2 4 2 2
#> [34849] 4 2 5 2 3 2 5 2 2 3 3 2 2 5 4 4 5 2 5 1 5 5 4 2 2 1 5 1 5 3 2 1 1 3 2 2
#> [34885] 4 4 3 4 2 3 3 1 2 1 2 4 5 5 2 3 2 2 3 4 2 2 2 1 1 3 3 5 2 4 3 2 2 3 2 2
#> [34921] 3 5 4 3 1 5 2 2 2 2 4 5 1 2 5 3 2 2 2 4 2 3 2 5 2 3 2 1 4 2 3 4 3 2 3 4
#> [34957] 4 2 3 1 5 2 2 1 1 2 3 2 3 3 3 3 3 2 3 1 3 3 2 2 1 5 5 5 3 4 2 4 3 3 5 2
#> [34993] 2 2 2 3 3 4 2 2 1 2 5 5 3 5 2 2 4 4 1 5 4 3 3 3 3 2 2 2 2 2 4 4 2 1 2 3
#> [35029] 2 1 2 2 2 5 4 2 5 5 3 4 5 2 5 3 1 2 5 2 3 3 2 4 4 2 3 3 3 2 2 5 3 4 2 4
#> [35065] 2 2 1 2 1 2 5 1 2 5 5 2 2 5 3 5 2 5 2 5 3 5 3 1 1 2 2 1 2 3 3 3 2 5 3 4
#> [35101] 2 2 3 4 2 3 3 2 1 2 4 5 4 3 2 3 3 2 5 2 3 1 3 2 4 1 4 2 2 2 3 2 3 2 1 3
#> [35137] 5 2 3 1 3 2 2 2 3 3 4 3 1 3 2 2 2 1 3 3 2 2 3 3 3 3 2 5 1 3 1 5 5 2 5 3
#> [35173] 4 4 4 2 2 2 1 5 5 3 1 2 5 3 5 3 5 3 5 5 2 2 4 4 5 1 1 4 4 5 5 3 3 3 3 2
#> [35209] 2 2 4 3 5 2 3 2 3 4 2 1 3 3 2 5 2 2 2 2 3 3 5 2 2 2 4 5 3 3 5 2 3 2 3 2
#> [35245] 2 2 3 3 2 5 2 3 2 4 1 3 2 2 3 2 3 2 5 2 4 2 2 4 5 2 2 2 2 4 3 3 2 2 2 3
#> [35281] 5 2 4 5 2 2 2 1 2 3 3 5 1 2 1 2 3 1 2 1 3 4 5 1 4 2 2 3 3 5 2 3 1 2 2 2
#> [35317] 2 2 3 1 2 3 1 1 5 3 2 4 1 2 2 1 3 5 2 2 3 4 2 3 4 5 2 5 3 5 4 3 4 4 5 5
#> [35353] 5 3 2 2 1 2 4 3 3 2 5 5 1 2 2 4 5 5 1 4 5 4 2 2 5 1 3 2 3 3 5 3 1 5 5 5
#> [35389] 2 3 1 3 2 2 1 5 1 1 5 2 2 2 4 4 5 3 2 2 4 2 2 3 2 2 2 5 3 2 2 3 3 4 1 2
#> [35425] 5 2 2 4 2 5 2 1 2 5 3 1 2 2 5 4 5 2 3 1 3 3 3 2 1 3 2 5 5 5 1 2 2 2 2 3
#> [35461] 2 2 2 2 2 5 3 2 3 2 3 2 1 3 1 4 2 2 2 3 2 3 2 2 2 2 2 2 2 2 3 5 5 1 5 2
#> [35497] 4 2 5 2 4 2 2 5 4 3 3 3 2 3 1 1 2 2 5 3 2 4 1 4 2 2 3 5 2 2 2 2 2 2 2 2
#> [35533] 2 1 5 2 3 2 2 5 3 1 2 2 1 4 5 1 3 4 2 1 2 2 2 3 3 3 2 2 3 2 4 1 2 4 2 1
#> [35569] 1 2 3 2 4 2 2 3 2 3 3 2 2 2 1 5 3 5 4 5 5 1 2 2 1 5 4 2 4 3 4 5 2 2 2 2
#> [35605] 4 2 2 3 2 5 5 5 2 2 2 1 5 5 2 2 3 3 2 5 4 2 5 1 1 2 2 2 2 2 3 1 4 5 5 2
#> [35641] 2 2 2 3 5 5 1 1 3 4 5 3 3 3 2 3 2 3 3 2 1 1 1 2 2 5 3 2 3 2 4 1 1 1 2 2
#> [35677] 3 2 2 2 2 5 3 2 3 4 2 5 5 4 4 2 1 3 2 3 3 5 1 3 3 2 2 3 5 3 3 5 2 3 2 2
#> [35713] 4 3 2 5 3 5 2 3 2 3 5 4 5 3 3 2 2 2 2 1 2 5 1 5 5 5 2 2 3 1 2 2 2 4 2 1
#> [35749] 1 2 2 2 5 5 5 4 5 1 2 1 3 1 2 1 5 3 2 1 3 2 2 3 2 2 2 2 1 5 1 4 2 3 1 5
#> [35785] 5 4 2 2 2 5 2 1 2 5 3 3 4 4 2 3 2 4 2 2 4 2 1 1 3 2 2 4 2 1 1 5 3 3 2 4
#> [35821] 5 2 5 1 2 4 2 3 5 2 2 1 3 2 2 5 3 2 5 3 3 2 3 5 2 1 3 4 2 4 3 3 2 3 2 4
#> [35857] 1 5 2 2 2 2 1 3 4 2 1 2 2 2 5 4 1 2 5 5 2 4 2 5 4 2 3 4 2 2 2 5 3 5 1 1
#> [35893] 2 2 3 4 2 1 1 5 1 4 2 3 3 3 2 3 5 1 3 3 1 3 2 2 2 4 1 3 4 4 4 5 5 3 5 2
#> [35929] 3 3 1 3 5 2 2 5 3 2 3 2 2 2 3 5 1 2 4 1 1 2 2 5 2 2 3 2 3 5 1 2 3 2 1 4
#> [35965] 5 4 3 1 4 2 5 2 2 2 3 5 1 2 4 2 1 1 2 5 2 2 3 1 2 2 4 3 2 3 2 2 2 2 2 2
#> [36001] 3 2 2 2 1 3 3 5 2 3 4 4 1 2 3 1 3 2 3 2 1 1 5 3 2 5 2 1 3 5 5 5 5 2 2 3
#> [36037] 3 2 2 1 4 5 2 3 5 3 1 1 1 1 2 5 4 4 4 2 5 2 1 3 2 2 2 3 2 3 3 3 2 2 1 2
#> [36073] 2 2 3 2 2 2 2 1 4 2 1 2 2 3 1 2 5 2 1 2 2 2 3 2 2 5 2 2 3 1 5 5 2 3 2 2
#> [36109] 1 2 1 2 2 2 2 2 4 3 5 5 1 1 1 3 2 1 1 2 2 2 2 4 5 2 3 3 2 4 4 3 4 5 3 5
#> [36145] 3 2 2 2 2 3 2 2 2 5 1 3 5 2 3 3 2 3 2 2 3 2 3 2 2 4 5 2 5 2 2 2 3 2 3 3
#> [36181] 2 2 2 4 2 2 2 2 2 5 2 5 5 2 4 1 1 2 2 2 1 1 2 1 3 2 4 3 2 2 3 2 2 1 2 3
#> [36217] 3 3 5 1 2 2 4 1 2 2 3 2 2 4 5 5 2 3 2 3 2 2 2 3 4 5 2 4 2 2 1 5 2 2 2 2
#> [36253] 5 1 5 2 1 3 5 4 4 5 3 5 5 1 2 4 5 2 5 3 4 2 2 2 2 4 1 2 2 2 4 5 5 1 3 4
#> [36289] 2 2 2 3 2 2 5 1 3 2 1 1 1 4 2 5 2 1 1 2 2 2 2 2 5 3 2 5 5 4 3 1 2 2 5 2
#> [36325] 5 2 1 4 4 3 1 2 4 2 3 5 4 4 2 5 2 2 3 3 1 2 3 2 2 2 2 4 2 3 4 4 2 1 2 1
#> [36361] 3 5 5 2 2 5 5 2 1 1 2 2 2 5 4 5 5 2 2 3 2 1 4 5 2 2 4 3 4 2 3 2 2 4 2 2
#> [36397] 1 5 5 2 2 3 2 3 1 2 2 2 5 2 2 2 4 2 2 2 2 2 3 2 3 1 3 5 5 1 1 1 2 2 4 5
#> [36433] 2 1 3 3 1 4 3 5 2 2 2 2 1 1 3 2 3 2 2 2 5 2 3 5 2 1 2 4 3 2 5 2 3 4 2 3
#> [36469] 1 1 2 4 4 2 5 3 2 1 5 4 1 2 4 1 3 3 1 2 2 3 2 2 1 5 2 4 2 5 2 2 1 2 2 2
#> [36505] 3 3 5 1 1 1 1 5 1 3 2 5 3 2 5 3 1 4 2 2 3 2 3 4 5 5 1 2 5 3 4 2 2 3 2 1
#> [36541] 1 1 3 1 4 3 5 2 3 3 2 2 5 2 3 2 2 3 2 3 2 1 2 3 2 2 1 3 3 5 4 1 4 2 1 4
#> [36577] 1 5 5 5 1 2 2 5 2 2 2 2 3 5 3 2 2 2 2 2 3 3 3 1 3 2 3 5 1 3 5 2 3 5 2 1
#> [36613] 3 3 2 2 3 5 2 2 5 3 3 3 2 2 3 3 5 3 2 1 2 2 4 3 5 2 5 2 2 1 3 4 1 5 1 3
#> [36649] 1 2 4 4 1 3 2 2 4 5 2 5 2 2 2 3 4 4 2 3 2 2 2 5 2 2 3 1 3 2 1 5 4 5 2 1
#> [36685] 4 2 3 2 4 1 2 2 5 4 1 3 2 4 5 1 2 3 2 1 2 3 2 1 3 5 2 2 3 5 4 3 1 5 2 5
#> [36721] 2 2 3 1 3 2 3 1 2 4 2 2 5 3 1 1 5 4 4 5 5 3 3 5 3 5 3 3 3 2 2 5 2 2 2 2
#> [36757] 2 2 5 4 5 2 2 4 2 1 5 1 2 2 2 4 2 2 5 2 2 3 2 5 3 5 3 2 4 1 3 2 2 5 1 3
#> [36793] 1 4 2 5 3 2 1 4 2 3 4 4 1 5 2 1 4 1 4 2 2 2 5 5 2 4 2 1 1 2 4 3 4 2 1 2
#> [36829] 2 4 2 5 3 4 2 2 2 1 2 2 2 2 3 1 2 5 1 5 4 3 2 3 5 2 2 2 4 3 2 1 5 4 4 1
#> [36865] 3 2 3 5 2 3 2 2 2 5 5 2 3 1 2 2 2 3 2 2 3 2 2 2 2 1 2 2 2 5 1 3 4 3 2 3
#> [36901] 2 2 1 2 2 2 2 2 2 3 5 2 2 1 2 5 3 2 4 3 2 3 1 2 3 2 4 4 5 2 1 1 3 3 3 3
#> [36937] 4 5 1 2 2 5 3 2 1 5 2 4 1 1 1 4 3 2 5 2 4 4 5 3 2 5 3 2 1 3 4 2 2 5 2 3
#> [36973] 1 2 1 3 5 1 2 3 2 4 4 2 2 3 3 5 1 1 2 2 3 1 2 2 3 5 5 4 1 4 5 1 5 2 3 1
#> [37009] 4 1 3 5 4 1 1 4 2 3 4 2 4 4 4 4 2 2 1 2 1 1 4 1 3 4 2 5 2 2 5 3 2 3 5 4
#> [37045] 2 2 4 3 2 5 3 1 3 1 3 3 2 2 4 5 3 3 2 5 2 2 2 5 2 2 2 4 3 3 5 1 1 2 1 2
#> [37081] 1 2 1 5 1 2 3 3 1 4 5 4 3 3 1 1 3 4 4 3 4 3 5 2 5 3 2 2 2 3 3 5 2 5 2 2
#> [37117] 2 2 1 4 2 2 2 3 4 2 5 4 2 2 5 2 2 3 5 2 3 2 3 2 5 2 3 2 3 2 3 3 2 3 1 3
#> [37153] 3 5 1 3 4 2 5 4 4 4 1 4 3 2 1 2 1 3 2 3 5 1 4 4 1 3 2 1 2 3 2 3 5 1 5 3
#> [37189] 2 4 2 4 3 4 2 2 2 2 2 3 4 3 5 3 3 1 2 2 3 5 1 2 1 4 2 3 2 2 3 5 4 2 5 3
#> [37225] 2 5 4 2 5 2 4 3 5 2 2 2 2 1 3 5 5 2 1 2 2 2 5 3 4 3 2 2 1 5 4 2 2 2 5 2
#> [37261] 2 4 3 2 3 4 2 4 5 2 4 2 3 4 1 2 2 3 1 1 1 5 4 3 2 3 2 4 4 1 1 5 5 4 5 1
#> [37297] 4 2 1 2 2 3 1 5 3 3 5 4 3 2 3 3 2 4 3 5 4 4 4 1 3 2 2 1 5 1 5 3 1 2 2 2
#> [37333] 2 1 3 2 5 2 3 4 3 2 4 2 2 2 5 3 5 2 1 2 3 2 1 3 3 4 2 2 2 2 2 2 3 2 5 5
#> [37369] 4 2 2 2 3 3 3 2 2 4 3 2 3 2 1 1 1 2 3 3 2 2 2 5 2 2 4 5 3 4 2 2 2 1 2 3
#> [37405] 3 2 4 1 3 1 2 5 2 2 4 2 2 4 4 3 5 2 3 5 2 2 2 5 1 4 3 5 2 1 1 2 1 2 2 2
#> [37441] 2 2 5 4 3 1 4 4 2 1 3 1 3 2 3 1 2 3 1 4 5 2 1 3 2 4 3 2 2 4 3 5 3 2 4 5
#> [37477] 2 3 2 3 2 3 3 2 2 2 2 5 3 2 1 1 2 3 4 2 5 3 2 4 2 2 5 3 2 3 2 5 1 2 2 2
#> [37513] 1 3 4 4 2 3 4 2 2 3 5 5 5 2 2 2 2 5 3 2 4 1 2 3 2 3 3 3 2 2 1 2 5 2 2 2
#> [37549] 4 2 5 1 3 3 2 2 4 2 2 2 5 2 2 4 3 2 3 2 2 2 5 3 4 2 3 2 5 4 5 2 2 2 5 3
#> [37585] 3 3 2 3 2 2 2 2 5 2 2 3 4 3 4 2 2 1 3 1 1 4 4 1 2 2 3 2 4 2 2 2 5 4 2 1
#> [37621] 1 2 2 3 2 2 1 3 2 3 5 1 1 3 1 2 5 2 5 3 3 2 4 2 2 3 5 2 2 5 2 5 2 1 4 2
#> [37657] 5 2 4 2 1 4 5 2 3 1 2 2 3 3 2 1 1 3 3 5 2 2 2 5 1 2 3 2 1 1 2 2 4 1 2 3
#> [37693] 2 1 2 5 3 2 5 2 4 3 1 1 4 5 2 2 5 1 2 4 4 2 2 2 3 5 3 2 2 2 1 3 2 2 5 2
#> [37729] 3 2 5 4 5 5 3 2 1 2 2 3 4 3 5 5 4 2 2 2 2 2 4 3 5 4 4 5 4 4 2 3 5 5 2 2
#> [37765] 1 3 2 1 2 2 3 2 1 5 3 2 3 2 2 5 2 4 2 1 1 4 2 4 5 3 4 5 2 2 1 3 3 3 4 3
#> [37801] 2 3 5 4 4 4 4 5 5 2 1 4 1 1 3 2 2 2 4 3 2 2 3 5 5 5 2 2 5 2 5 4 2 2 5 2
#> [37837] 3 3 3 2 1 1 5 5 3 4 2 2 1 5 2 4 2 4 2 5 3 3 2 5 5 4 1 2 2 2 2 5 3 3 5 2
#> [37873] 4 2 4 2 1 2 1 2 5 5 2 1 3 4 1 2 3 4 2 5 2 4 1 1 2 2 5 3 3 2 5 3 2 3 1 3
#> [37909] 2 1 4 4 3 3 3 2 2 2 2 3 2 1 2 2 2 4 1 3 3 3 2 3 1 2 2 2 1 1 2 5 2 4 5 2
#> [37945] 2 4 3 5 2 3 2 3 3 2 2 2 2 4 2 2 3 3 2 1 1 3 2 4 3 5 3 3 5 2 1 2 2 2 3 2
#> [37981] 1 2 3 5 5 2 2 3 5 2 3 1 1 3 2 2 2 3 1 2 2 1 2 5 5 2 2 5 1 5 2 2 1 2 2 1
#> [38017] 4 4 1 2 3 3 2 5 1 1 3 2 1 5 2 3 1 2 3 4 2 1 3 2 1 1 5 3 5 3 3 5 4 2 3 5
#> [38053] 4 4 1 3 2 5 4 3 3 3 3 2 2 2 5 2 3 1 3 1 3 2 3 2 3 1 2 2 2 2 5 2 2 5 5 2
#> [38089] 3 5 4 4 4 4 5 2 1 2 3 2 2 4 3 2 1 1 1 1 2 3 3 2 3 3 5 5 2 2 1 5 3 2 2 5
#> [38125] 5 3 2 1 1 2 2 1 5 5 5 3 5 2 2 2 2 2 2 2 5 4 2 5 2 5 2 4 1 3 1 3 4 2 2 5
#> [38161] 1 1 4 5 2 5 5 2 3 3 5 2 5 5 3 2 5 4 2 3 3 2 1 4 1 1 5 5 3 5 2 3 2 2 1 2
#> [38197] 4 3 3 1 1 3 4 4 2 2 5 2 4 2 3 2 2 2 4 2 2 5
#>
#> Within cluster sum of squares by cluster:
#> [1] 61973.94 110615.23 82522.73 74106.14 30632.03
#> (between_SS / total_SS = 47.7 %)
#>
#> Available components:
#>
#> [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
#> [6] "betweenss" "size" "iter" "ifault"
$kmeans_model(5)
proc.kmeans.results#> K-means clustering with 5 clusters of sizes 7926, 5220, 14430, 4366, 6276
#>
#> Cluster means:
#> BPXDI3 BPXSY3 BPXDI2 BPXSY2 BPXDI1 BPXSY1
#> 1 0.46188807 0.20536309 0.46921717 0.20002435 0.48104800 0.19216582
#> 2 -1.19959080 -0.97977434 -1.23154632 -0.99348269 -1.22795122 -0.99800508
#> 3 -0.03958390 -0.32250547 -0.04782192 -0.32172411 -0.06026541 -0.31243106
#> 4 0.74504593 1.89305052 0.79686121 1.91325640 0.82269579 1.91464700
#> 5 -0.01286421 -0.01985189 -0.01264647 -0.01756086 -0.01993961 -0.02620911
#> BMXLEG BPXML1 BPXPLS PEASCTM1 BMXWAIST BMXBMI
#> 1 0.39808341 0.14019410 0.01764375 0.4189000 1.16793701 1.20993770
#> 2 -0.83984222 -0.92116389 0.56677239 0.1972831 -0.70049693 -0.69730563
#> 3 0.17158591 -0.27066267 -0.11199121 0.1851560 -0.02345797 -0.09234715
#> 4 -0.19299637 1.78090194 -0.36014814 0.5604144 0.55219747 0.36891860
#> 5 -0.06446706 -0.02747904 0.01434730 -1.5086982 -1.22257336 -0.99237732
#> BMXHT BMXARMC BMXARML Poverty_Income_Ratio BMXWT Age
#> 1 0.6680187 1.1557629 0.7646280 0.20186905 1.2061885 0.53995774
#> 2 -0.2960422 -0.6052468 -0.2739096 -0.18484863 -0.6002403 -0.68944986
#> 3 0.3686741 0.1110423 0.3339697 0.04915597 0.0910803 0.05724003
#> 4 0.3848402 0.4143226 0.4972752 0.06229332 0.4211034 1.31828346
#> 5 -1.7128036 -1.4997549 -1.8516444 -0.25755218 -1.5264217 -1.15716635
#>
#> Clustering vector:
#> [1] 3 3 3 1 1 5 1 4 3 3 4 1 3 3 5 1 4 2 3 3 1 3 1 3 3 4 3 2 4 4 4 3 5 3 5 3
#> [37] 3 1 5 2 4 5 1 1 4 2 3 3 2 5 3 5 5 3 4 4 1 1 3 1 2 5 3 5 1 1 3 4 2 3 2 1
#> [73] 4 3 4 3 4 2 1 3 5 2 2 2 1 3 3 5 3 4 4 3 5 3 3 5 4 3 2 2 3 3 3 1 3 2 3 3
#> [109] 1 1 5 2 5 3 3 3 3 2 3 5 3 3 3 3 4 1 2 2 1 4 3 1 3 2 2 2 3 2 2 4 5 1 3 2
#> [145] 1 4 3 4 5 1 4 4 1 5 2 2 3 5 5 1 2 4 3 3 2 1 5 3 3 3 5 4 3 1 4 5 5 1 5 3
#> [181] 3 5 5 3 3 5 1 4 1 2 5 5 3 5 3 1 3 5 3 2 2 3 3 1 5 1 1 2 4 3 3 1 1 3 1 1
#> [217] 3 3 1 5 3 4 3 3 4 2 2 4 2 5 3 4 1 1 5 3 3 1 4 5 5 1 5 3 2 5 4 5 3 5 3 2
#> [253] 1 5 3 1 3 4 4 3 3 3 1 5 3 2 1 3 2 1 4 3 3 2 4 3 3 3 4 3 5 3 5 2 1 2 5 5
#> [289] 3 5 3 3 1 2 2 1 5 3 1 4 3 2 2 3 5 4 3 4 1 2 3 3 3 3 5 3 3 1 5 3 1 4 5 2
#> [325] 4 5 5 5 1 1 3 2 3 1 2 3 3 1 5 5 5 3 3 4 3 3 4 1 5 1 4 1 3 5 1 3 4 3 5 3
#> [361] 3 1 2 4 5 3 3 2 3 4 5 3 3 3 1 1 1 1 5 4 3 1 1 1 3 3 4 2 3 3 3 1 4 3 5 3
#> [397] 4 4 2 2 3 1 4 1 1 3 5 4 4 4 3 1 3 1 3 5 2 4 3 5 5 5 5 4 5 5 5 5 2 3 3 5
#> [433] 2 3 3 4 3 4 5 5 3 5 3 1 4 3 4 3 1 1 1 5 2 2 5 5 1 1 2 3 1 3 5 4 3 5 2 2
#> [469] 5 3 3 2 3 4 4 4 1 5 4 3 3 4 3 3 5 3 2 5 2 5 2 3 4 1 1 3 2 1 5 1 5 3 5 3
#> [505] 5 5 1 3 3 1 3 4 1 1 4 3 3 2 3 3 3 5 1 2 5 2 5 1 2 3 3 5 3 1 3 5 3 3 1 4
#> [541] 4 3 3 1 5 3 1 1 5 3 1 3 3 1 3 3 5 5 5 3 3 3 3 1 1 5 1 3 1 3 5 1 5 1 4 3
#> [577] 3 3 3 3 1 3 2 2 3 3 3 5 3 3 3 1 1 5 1 3 4 3 1 1 3 3 3 1 3 4 2 4 5 5 3 3
#> [613] 1 1 5 5 2 1 2 3 5 3 3 3 1 2 4 3 5 3 4 5 5 5 3 4 3 3 4 3 3 3 3 1 2 4 3 1
#> [649] 3 4 5 1 3 1 3 1 3 2 3 1 2 3 4 2 1 2 3 2 3 2 4 2 1 3 1 3 3 1 1 3 3 2 3 2
#> [685] 1 2 3 1 1 3 1 1 1 5 2 3 4 1 3 5 5 3 1 5 1 3 5 5 3 5 5 3 5 5 3 5 3 2 3 1
#> [721] 5 5 2 1 5 1 5 3 3 3 3 3 2 2 1 2 3 4 5 5 1 2 4 3 1 2 3 3 2 3 3 3 2 2 1 3
#> [757] 1 3 3 2 1 3 3 3 3 1 2 4 1 3 1 3 5 3 4 2 3 3 5 4 3 5 2 1 5 1 2 3 3 5 1 1
#> [793] 2 5 3 3 4 1 2 1 1 1 3 4 3 3 1 3 1 3 1 3 1 3 2 5 1 2 1 3 3 3 5 3 1 5 4 2
#> [829] 2 3 2 3 3 4 1 4 1 3 3 1 3 1 3 3 3 1 5 3 3 2 1 3 5 5 3 5 2 1 4 3 3 3 3 3
#> [865] 3 1 5 3 5 5 3 5 3 1 3 5 5 2 1 1 4 1 3 5 3 3 2 4 2 3 4 3 2 3 2 1 2 1 5 1
#> [901] 1 3 4 4 1 3 3 1 3 3 4 3 3 2 1 3 5 4 5 2 3 1 4 3 1 3 4 3 1 1 4 3 2 3 3 3
#> [937] 3 5 3 3 5 3 5 5 5 1 1 5 2 3 3 2 2 3 1 3 1 3 3 3 1 2 3 3 3 5 5 3 4 5 3 3
#> [973] 3 2 3 3 5 3 3 1 3 3 3 3 3 4 3 4 2 1 5 3 5 1 5 3 1 5 4 3 3 3 3 1 1 2 3 3
#> [1009] 3 2 4 3 1 3 1 3 5 1 3 3 3 2 3 3 4 3 3 3 1 1 4 3 5 5 3 3 5 3 1 3 3 3 5 3
#> [1045] 3 3 5 4 1 3 3 2 2 3 1 3 5 4 5 2 3 3 1 3 1 1 1 3 1 5 4 1 3 4 5 2 5 3 1 1
#> [1081] 3 3 1 3 1 4 3 3 3 3 2 1 5 4 2 1 5 5 5 2 2 4 3 3 1 3 2 1 3 4 3 2 1 3 3 4
#> [1117] 5 4 1 5 4 4 1 2 1 3 3 5 3 3 5 1 3 3 2 5 3 5 4 1 3 3 2 1 3 5 3 3 5 3 3 1
#> [1153] 1 3 4 1 3 5 2 2 3 2 4 1 1 4 3 1 1 3 3 5 1 3 2 1 4 4 2 1 3 1 3 4 5 3 1 3
#> [1189] 1 5 4 3 3 3 3 4 3 1 3 5 5 5 3 3 5 3 1 3 1 4 3 1 3 3 5 4 3 4 1 3 5 2 1 4
#> [1225] 1 2 2 1 2 5 2 4 3 2 1 1 5 2 3 1 3 3 4 4 1 3 3 2 1 2 3 5 3 2 2 3 3 3 3 3
#> [1261] 2 3 4 3 4 3 2 2 3 3 5 3 3 5 3 2 5 3 3 3 3 3 1 3 3 3 1 3 3 4 2 3 1 4 1 5
#> [1297] 2 2 1 5 2 3 3 5 3 5 3 4 1 4 3 1 2 2 2 3 5 3 1 5 3 2 3 3 3 4 3 1 4 3 4 3
#> [1333] 1 3 5 3 1 5 3 3 3 3 3 3 3 3 1 1 3 4 2 3 3 5 3 5 3 5 4 1 5 5 3 5 3 5 1 3
#> [1369] 4 1 2 1 4 3 1 5 3 1 3 3 4 3 5 1 3 1 5 5 3 1 2 4 2 3 1 3 2 4 3 5 1 4 1 3
#> [1405] 3 1 3 2 3 5 1 3 1 3 2 2 3 4 2 4 3 3 3 4 3 1 3 2 5 3 1 1 2 1 3 4 4 4 2 5
#> [1441] 1 3 1 3 3 4 1 5 3 3 3 3 1 2 2 1 3 2 5 1 1 5 1 1 2 1 5 2 3 1 3 4 5 3 3 1
#> [1477] 3 1 5 3 5 3 3 1 4 4 2 1 5 1 1 4 3 4 5 4 1 4 1 4 1 1 5 3 1 5 1 3 4 2 3 3
#> [1513] 4 3 1 1 3 2 4 5 3 1 3 3 1 5 1 5 1 2 2 5 3 4 1 3 2 5 1 1 3 1 2 3 4 4 5 3
#> [1549] 3 1 3 4 1 3 2 5 5 5 5 3 5 3 1 3 1 5 2 5 1 3 3 4 4 1 1 4 3 3 3 3 4 4 5 1
#> [1585] 3 5 1 3 4 5 3 3 3 1 3 1 4 3 1 1 3 5 5 3 3 3 3 3 1 5 5 1 1 2 3 2 3 4 2 3
#> [1621] 3 4 3 3 4 3 4 3 1 5 1 5 1 3 3 3 3 3 1 4 3 2 3 1 1 3 4 2 2 4 3 5 1 2 2 5
#> [1657] 3 3 1 3 5 2 3 3 4 3 1 3 3 5 5 3 5 2 3 5 4 4 1 3 3 2 3 3 3 2 3 5 4 4 5 3
#> [1693] 5 1 1 2 4 3 2 2 3 1 3 1 5 1 5 4 4 5 3 5 5 1 1 1 3 4 5 1 3 5 3 3 5 5 1 3
#> [1729] 3 3 3 1 5 5 3 4 3 4 5 3 5 3 3 3 1 3 3 3 4 3 1 3 3 3 1 1 2 3 2 5 5 5 3 3
#> [1765] 3 1 1 5 5 3 4 3 4 4 5 3 3 3 3 4 5 1 4 3 4 4 3 3 3 3 1 5 3 1 3 3 5 4 3 4
#> [1801] 2 5 4 1 3 3 3 4 3 3 3 3 4 3 2 3 4 2 5 4 5 2 3 3 1 3 3 1 3 3 3 1 1 5 3 3
#> [1837] 5 2 1 3 5 2 5 3 3 4 3 1 2 2 1 2 1 4 5 2 4 1 1 3 3 5 3 3 2 2 2 5 3 3 5 5
#> [1873] 5 5 2 3 2 1 3 1 3 4 3 3 3 5 5 2 1 2 2 3 2 1 3 1 3 5 1 3 5 3 2 2 5 1 3 5
#> [1909] 5 2 3 1 5 5 3 5 3 3 1 2 3 5 5 3 3 5 2 3 3 2 4 3 4 5 1 2 3 3 1 3 3 3 3 3
#> [1945] 5 4 1 1 5 4 2 5 2 3 1 5 4 5 1 5 3 3 2 4 1 5 5 3 1 5 1 3 3 3 3 3 3 5 3 4
#> [1981] 5 3 1 5 1 3 3 3 3 5 3 1 4 1 3 2 5 3 4 3 1 3 2 3 1 1 1 2 3 3 3 3 4 4 3 3
#> [2017] 3 4 3 5 1 3 4 2 4 3 1 5 4 3 3 3 1 1 1 4 3 3 3 4 1 5 3 3 3 3 3 3 3 2 1 4
#> [2053] 3 3 1 4 5 5 3 3 2 3 4 1 5 3 3 1 1 4 5 2 4 1 3 2 5 5 4 5 3 3 3 1 3 1 4 1
#> [2089] 3 1 1 2 3 2 1 3 1 2 4 3 3 2 2 3 3 3 1 5 3 3 1 3 5 4 5 4 2 3 1 1 3 3 3 2
#> [2125] 2 3 5 3 5 1 4 2 2 1 5 3 4 5 1 4 1 3 3 1 3 5 3 3 1 3 1 3 2 1 1 3 3 5 3 3
#> [2161] 1 3 3 1 3 3 1 2 3 5 5 3 3 2 1 1 3 5 3 2 1 3 4 2 3 3 4 3 3 5 3 3 3 3 4 3
#> [2197] 2 4 1 2 3 3 3 5 3 1 1 3 3 3 3 3 5 2 3 5 4 3 1 3 2 1 1 3 3 4 3 3 2 3 2 4
#> [2233] 5 1 5 4 3 3 2 3 1 3 3 1 3 3 3 4 2 4 4 1 3 5 5 2 3 3 5 5 3 2 3 4 1 3 5 1
#> [2269] 3 4 3 5 5 3 1 3 1 3 3 3 3 1 4 5 5 2 3 3 4 3 5 3 2 4 3 1 3 3 1 3 2 1 3 2
#> [2305] 2 5 5 3 3 4 5 2 5 3 3 5 2 2 4 5 3 3 3 5 3 2 4 1 3 3 2 3 5 5 3 3 3 3 3 3
#> [2341] 3 5 3 5 3 3 1 1 1 3 3 1 3 3 3 3 2 5 1 2 3 5 3 3 1 3 5 2 3 1 5 1 3 1 3 2
#> [2377] 3 1 1 1 3 1 2 3 1 3 4 3 3 5 1 2 3 5 2 4 1 1 3 3 3 4 3 3 3 5 5 2 2 4 5 4
#> [2413] 3 4 1 2 1 5 1 2 3 3 1 4 1 4 5 2 3 1 1 3 3 1 4 3 3 3 5 1 5 4 1 1 5 5 3 3
#> [2449] 3 2 3 3 3 1 3 3 3 3 1 2 5 1 3 3 1 1 1 1 3 1 1 3 1 3 5 3 1 3 1 1 3 3 4 4
#> [2485] 3 5 2 5 3 3 4 3 5 4 3 3 1 3 3 3 5 3 4 4 3 1 5 3 3 3 3 3 3 3 2 1 5 2 4 2
#> [2521] 5 5 3 2 1 5 1 1 3 3 1 5 1 3 3 5 4 3 5 4 1 3 1 4 3 5 5 3 5 3 5 3 1 4 2 3
#> [2557] 3 4 1 5 3 3 3 1 3 3 1 5 1 3 2 3 3 5 5 2 1 5 3 3 1 4 4 5 3 3 3 2 3 3 5 3
#> [2593] 2 3 1 3 3 5 1 3 3 3 5 3 3 2 5 5 2 4 1 3 3 3 3 1 5 4 2 1 3 3 4 5 5 1 4 3
#> [2629] 4 2 5 3 1 2 2 3 1 3 5 3 3 3 3 1 3 3 4 1 5 2 5 2 2 3 5 5 3 3 2 5 2 5 3 1
#> [2665] 3 3 3 3 1 2 5 3 1 3 1 1 5 4 1 3 1 3 5 5 3 1 5 2 2 3 5 2 3 5 2 3 3 3 2 5
#> [2701] 1 3 1 3 3 2 3 5 4 3 4 1 5 1 1 5 1 5 5 3 3 3 5 1 5 1 2 3 3 5 3 5 1 5 3 5
#> [2737] 3 4 3 4 5 2 1 5 3 3 3 1 2 1 5 1 5 4 3 5 3 3 5 3 3 5 2 3 3 5 3 3 3 4 5 1
#> [2773] 3 2 3 1 2 2 3 3 5 3 5 3 3 4 1 3 2 4 5 1 4 2 3 5 4 3 3 3 4 3 3 2 1 3 3 2
#> [2809] 4 4 1 3 1 1 3 1 1 1 5 1 3 3 5 3 3 2 1 5 3 3 3 1 3 4 4 1 2 3 3 3 3 3 2 3
#> [2845] 3 2 2 3 3 4 2 3 4 4 1 3 3 1 3 4 3 2 4 4 3 5 3 4 1 2 5 3 3 5 3 1 2 5 3 3
#> [2881] 3 5 2 4 3 3 3 3 1 3 5 2 5 1 1 3 3 2 5 5 2 2 5 1 2 1 1 3 1 2 3 3 3 2 3 1
#> [2917] 5 1 3 2 1 2 1 4 3 2 2 3 3 3 4 1 3 5 5 5 2 5 3 2 1 3 5 3 1 3 1 1 4 3 5 3
#> [2953] 3 5 3 3 1 3 5 5 3 3 3 3 1 1 3 3 2 4 3 2 3 3 2 4 4 3 3 1 5 2 3 5 4 3 1 3
#> [2989] 2 5 3 2 4 2 2 3 1 1 5 3 3 3 2 1 3 5 1 1 2 2 3 1 2 4 3 3 1 1 4 3 1 5 1 2
#> [3025] 4 4 3 4 1 2 2 4 1 2 5 5 3 2 3 2 5 5 1 2 1 3 3 3 4 2 3 4 4 5 4 3 4 4 4 3
#> [3061] 3 1 3 2 2 3 5 2 3 3 3 3 3 5 1 2 4 3 3 1 4 5 5 3 4 5 5 3 1 1 2 3 3 1 3 3
#> [3097] 1 3 3 1 3 2 3 2 2 2 3 5 3 5 1 4 3 3 3 2 3 1 3 4 4 5 3 3 1 5 2 5 1 5 4 5
#> [3133] 3 5 4 4 5 3 1 4 4 2 4 3 2 4 1 3 3 3 4 3 3 3 5 3 3 3 3 3 4 4 1 5 4 2 2 2
#> [3169] 5 4 1 5 5 2 2 1 5 3 2 4 3 3 1 2 3 1 1 3 3 3 4 1 2 3 1 5 5 1 2 3 1 1 3 1
#> [3205] 3 3 3 5 3 3 2 4 5 1 3 4 5 1 3 5 5 4 4 2 1 3 4 2 2 3 1 3 3 5 3 1 1 3 2 5
#> [3241] 4 2 3 2 3 2 3 1 3 2 3 3 4 2 1 3 3 2 2 1 3 4 1 5 3 4 5 1 3 3 5 3 3 2 1 2
#> [3277] 5 1 1 4 2 3 3 5 3 3 3 2 4 3 3 4 3 5 1 3 3 3 3 4 1 4 3 4 2 1 3 1 5 3 1 1
#> [3313] 5 3 5 4 4 3 5 3 3 3 4 3 3 3 3 5 1 1 5 5 3 1 5 5 3 3 4 3 3 3 5 2 3 3 2 1
#> [3349] 1 3 1 3 3 3 3 3 2 3 1 1 3 5 3 4 5 3 4 3 2 1 3 3 3 3 1 5 5 1 5 4 1 2 2 5
#> [3385] 3 1 3 1 3 1 1 2 3 1 5 3 5 3 3 3 3 3 1 4 3 2 3 3 3 3 3 1 1 3 2 5 1 2 1 2
#> [3421] 3 5 4 1 1 2 1 3 4 1 5 3 5 4 3 1 2 4 1 1 2 1 3 3 1 1 5 1 3 1 3 5 2 5 5 5
#> [3457] 5 5 5 1 1 4 5 4 3 3 1 3 3 3 4 3 2 3 4 3 5 3 2 1 3 2 2 1 3 1 4 3 3 1 3 3
#> [3493] 3 1 3 5 5 3 1 1 2 1 1 5 4 3 1 4 4 3 1 3 3 1 3 3 5 5 3 1 3 5 3 5 3 1 1 4
#> [3529] 3 3 5 3 4 5 3 1 2 3 5 5 5 3 4 5 3 3 3 5 2 1 2 2 1 3 5 4 3 1 5 2 2 2 3 1
#> [3565] 1 3 5 5 4 1 2 5 3 3 3 4 3 4 1 3 3 5 2 1 3 1 3 2 3 3 1 5 3 5 4 3 1 1 3 1
#> [3601] 5 3 1 3 1 3 3 2 5 3 1 3 3 2 1 4 1 1 1 1 1 3 1 4 3 1 1 3 3 5 3 3 3 5 2 3
#> [3637] 3 3 3 5 5 2 4 1 3 3 5 5 3 3 2 1 3 4 4 3 4 2 3 3 3 4 3 5 4 3 2 1 3 3 1 1
#> [3673] 4 4 3 2 1 3 3 3 4 4 3 2 4 4 1 4 4 3 3 3 5 4 1 3 2 3 1 3 1 1 3 5 3 3 5 3
#> [3709] 3 3 3 4 2 3 3 3 1 1 1 1 3 5 1 3 1 2 3 2 1 2 1 4 3 1 4 3 3 1 2 5 2 2 1 3
#> [3745] 1 3 3 3 3 1 3 2 1 3 3 5 3 3 3 5 2 2 1 2 3 4 3 3 1 2 3 3 3 1 3 1 3 4 3 5
#> [3781] 3 5 3 5 3 5 5 1 5 1 4 3 3 4 3 3 3 3 1 3 2 1 2 3 3 3 3 3 5 1 3 1 2 3 5 1
#> [3817] 3 5 5 3 3 2 4 3 3 2 1 5 4 5 1 3 3 5 4 5 3 4 3 5 1 3 3 4 1 3 3 4 1 1 3 5
#> [3853] 3 4 3 3 2 2 2 5 3 3 2 5 3 3 2 5 3 1 5 2 1 5 1 1 3 2 5 2 2 3 4 5 3 5 1 4
#> [3889] 2 3 5 1 2 3 3 3 3 2 5 5 3 3 5 2 2 3 5 2 2 1 1 3 4 2 5 3 4 1 5 2 2 2 4 1
#> [3925] 1 5 2 3 4 4 3 1 3 4 2 3 1 4 3 4 2 2 4 4 3 2 4 3 4 3 5 1 3 5 3 2 3 2 3 4
#> [3961] 3 3 1 3 3 3 1 2 2 3 4 2 3 5 1 2 5 3 3 3 2 4 5 4 2 3 5 1 5 3 1 2 3 5 2 3
#> [3997] 3 5 1 1 4 3 3 1 5 3 1 1 3 3 1 1 1 3 2 4 3 3 2 2 2 3 4 3 2 3 5 2 2 5 4 1
#> [4033] 5 1 3 3 2 3 4 3 4 1 5 1 5 3 3 1 3 3 5 2 3 4 1 3 3 3 3 3 5 3 1 3 3 3 1 3
#> [4069] 5 3 3 1 3 3 3 3 4 1 4 2 3 2 1 3 5 3 4 1 5 5 3 3 1 4 1 1 1 3 3 3 3 3 3 4
#> [4105] 1 3 3 5 1 3 3 3 5 3 3 3 3 3 3 3 1 4 2 3 2 3 4 1 5 2 1 1 5 4 2 2 1 3 1 3
#> [4141] 5 1 3 5 2 3 4 3 1 5 2 3 4 5 3 1 2 3 5 5 1 3 1 5 3 3 5 1 1 2 5 4 5 4 1 3
#> [4177] 3 4 3 1 1 3 4 3 2 5 3 3 4 5 5 1 5 1 1 3 2 5 1 5 3 5 3 5 3 4 3 1 1 2 3 5
#> [4213] 1 3 3 2 1 1 4 5 1 4 1 5 3 1 2 2 3 3 2 3 3 3 4 3 4 3 4 5 1 4 3 3 5 3 5 5
#> [4249] 3 2 5 3 1 3 5 1 4 3 3 3 1 1 4 5 1 4 4 2 5 1 3 1 3 3 3 2 1 5 3 3 5 4 1 3
#> [4285] 2 3 1 1 1 2 1 1 5 3 2 1 3 5 4 3 4 2 3 1 4 5 3 1 4 3 4 3 3 2 3 3 1 4 5 5
#> [4321] 4 2 3 3 2 5 3 1 3 5 1 3 3 3 5 3 2 3 2 5 2 3 3 3 3 4 1 2 3 5 5 3 3 2 2 3
#> [4357] 3 1 4 4 3 1 5 3 5 3 1 2 1 3 3 1 3 5 3 4 5 3 5 3 2 1 1 1 3 5 5 3 4 2 3 2
#> [4393] 1 4 2 5 5 5 1 3 5 3 1 2 3 5 2 1 2 4 1 1 1 1 1 3 3 2 3 3 3 2 5 1 5 4 3 4
#> [4429] 3 2 1 1 2 3 3 3 3 3 3 1 1 3 3 3 5 3 5 5 1 4 1 4 3 3 5 3 2 3 2 1 2 4 5 1
#> [4465] 3 1 1 2 2 3 1 3 3 4 3 2 3 5 5 4 2 4 3 4 3 3 3 3 3 3 1 3 4 4 1 4 4 5 3 3
#> [4501] 2 5 1 3 4 1 3 1 5 5 5 3 3 3 5 2 1 5 4 4 1 2 2 2 3 3 3 1 2 5 3 3 4 1 5 1
#> [4537] 1 3 1 3 3 5 5 3 3 3 3 3 3 3 3 4 3 3 1 5 3 3 1 4 4 3 2 5 4 1 5 1 2 2 1 3
#> [4573] 1 4 2 3 1 3 1 1 3 4 2 1 1 4 3 2 4 3 3 3 2 3 3 3 1 5 5 5 2 1 3 5 1 5 3 4
#> [4609] 3 3 1 2 5 1 3 2 3 4 2 1 2 3 3 3 1 3 5 4 3 1 4 5 2 2 1 4 5 5 3 3 2 2 3 2
#> [4645] 2 1 2 2 1 1 1 3 4 3 3 5 5 5 5 2 5 1 2 5 1 5 3 3 4 4 1 5 2 4 1 2 1 3 4 2
#> [4681] 2 1 5 1 3 4 3 2 3 1 5 2 3 4 3 3 5 3 3 3 3 3 3 1 3 1 3 3 5 1 1 2 5 2 1 3
#> [4717] 3 5 5 1 3 3 5 2 2 3 3 1 3 4 1 2 3 5 3 1 1 3 3 3 2 3 5 4 3 5 1 3 5 3 3 1
#> [4753] 3 5 5 3 5 1 1 5 5 1 3 5 3 1 3 5 2 1 3 4 1 1 2 3 4 1 1 3 3 3 3 1 3 3 5 3
#> [4789] 3 4 4 5 3 1 5 2 3 4 2 2 3 3 3 2 2 5 3 3 5 4 5 3 4 2 5 4 4 5 3 2 4 2 2 1
#> [4825] 3 4 1 5 2 3 1 3 1 2 3 2 4 3 2 1 3 3 3 4 5 4 2 5 1 4 1 5 3 3 2 3 2 3 3 3
#> [4861] 2 5 1 3 5 3 1 3 1 1 5 2 3 5 3 1 2 1 3 5 5 5 3 1 1 4 3 5 2 3 3 3 3 3 5 1
#> [4897] 5 3 5 3 2 3 5 5 3 5 3 3 3 2 3 1 5 3 2 3 5 1 1 3 3 3 3 3 5 3 1 1 4 1 1 5
#> [4933] 2 1 3 3 3 1 1 1 3 1 1 1 3 5 5 1 3 1 1 5 3 3 2 4 3 3 4 3 2 3 1 2 1 1 5 5
#> [4969] 3 1 3 3 5 5 3 4 1 1 5 3 5 5 1 2 3 3 1 1 3 5 3 5 2 1 3 3 3 3 4 3 4 2 5 3
#> [5005] 1 3 5 1 2 3 5 3 1 4 3 2 1 3 3 3 3 2 1 1 1 3 3 2 2 4 4 3 3 2 3 5 1 3 4 1
#> [5041] 1 3 3 3 5 4 3 4 4 3 3 4 3 4 3 4 5 3 3 5 1 5 5 1 3 1 1 5 2 1 3 1 2 1 1 3
#> [5077] 3 2 3 5 3 2 3 4 4 3 3 4 1 1 5 2 5 3 4 3 4 1 5 3 2 5 1 1 3 3 3 3 4 1 3 2
#> [5113] 5 2 1 1 4 3 2 3 2 3 5 3 3 2 1 3 3 3 1 3 3 3 5 3 5 1 1 3 3 1 5 2 3 5 3 4
#> [5149] 4 3 3 3 1 3 3 4 2 2 1 5 3 3 5 3 1 4 3 3 3 3 5 3 3 2 2 5 3 2 3 4 2 1 5 3
#> [5185] 1 5 3 1 3 2 5 2 1 2 3 5 3 2 3 1 4 1 1 3 2 3 5 3 3 5 3 2 5 4 3 4 1 4 3 2
#> [5221] 2 5 3 2 3 1 2 3 3 2 2 1 3 1 1 3 4 3 4 3 3 3 3 3 1 3 3 3 2 2 1 1 5 1 3 5
#> [5257] 3 4 3 5 2 3 2 4 2 3 1 3 5 3 1 2 3 1 2 4 5 3 3 4 2 1 2 2 3 3 3 1 3 1 3 1
#> [5293] 3 3 2 3 2 2 5 3 4 3 2 1 3 2 5 3 3 1 1 4 5 3 5 3 4 1 4 3 1 2 1 1 3 1 3 3
#> [5329] 2 3 1 1 2 1 3 3 3 2 4 2 4 2 3 4 1 5 5 5 3 3 3 2 1 3 3 2 2 2 3 3 5 1 3 1
#> [5365] 2 3 3 3 3 5 5 2 2 3 4 2 1 2 3 2 4 1 1 1 5 1 4 3 3 3 3 5 5 1 3 2 4 3 4 1
#> [5401] 4 5 5 3 5 3 3 3 2 4 5 4 2 1 2 4 5 2 3 3 1 5 5 5 1 5 2 4 2 3 3 4 2 3 3 3
#> [5437] 2 3 1 1 3 3 5 4 2 5 3 4 3 1 1 2 2 3 3 3 1 5 1 5 2 3 1 2 5 2 3 1 3 3 3 2
#> [5473] 1 3 3 4 2 1 3 2 2 4 5 2 5 4 3 1 5 4 3 5 5 4 3 4 5 3 1 3 4 1 4 1 5 5 1 3
#> [5509] 1 2 3 3 5 1 3 3 4 3 5 5 3 3 3 3 3 1 3 1 4 3 3 3 3 3 1 1 5 1 3 5 1 1 1 1
#> [5545] 3 3 1 3 1 5 4 2 2 1 5 3 3 5 3 3 5 2 3 5 5 1 3 1 2 3 1 3 1 3 2 3 3 1 3 2
#> [5581] 3 3 2 3 1 3 1 5 4 2 1 3 4 5 3 4 3 3 1 2 5 1 4 3 1 2 4 3 1 5 3 1 3 3 3 3
#> [5617] 4 5 1 3 3 4 3 3 3 2 1 2 1 2 4 5 3 1 1 3 5 5 1 4 5 2 4 3 5 5 5 1 1 4 4 3
#> [5653] 1 3 3 4 3 3 3 5 3 4 4 3 4 4 1 3 3 2 1 4 1 3 3 5 3 5 3 2 2 1 2 2 2 1 2 3
#> [5689] 4 1 5 4 4 4 1 4 3 3 3 2 1 5 1 3 3 5 2 4 3 1 2 1 4 3 3 3 5 3 3 2 1 1 5 1
#> [5725] 3 1 4 3 5 5 3 3 3 3 4 4 3 1 2 4 3 3 3 1 2 5 5 2 3 1 5 3 3 5 2 1 1 5 3 2
#> [5761] 1 3 2 3 3 4 3 3 3 2 3 3 1 1 1 3 3 5 3 3 3 5 2 1 1 3 4 3 3 4 1 1 5 1 1 1
#> [5797] 5 3 1 3 2 5 4 2 3 2 3 2 5 2 4 2 3 3 3 3 1 3 4 4 5 3 3 2 3 3 3 3 4 3 4 1
#> [5833] 3 3 1 1 3 5 3 4 3 3 3 3 3 5 3 3 1 2 3 3 5 3 1 3 2 3 3 3 4 2 2 3 3 1 4 3
#> [5869] 1 2 4 3 3 2 3 3 4 2 5 2 5 5 3 1 4 4 5 5 1 5 4 3 3 1 2 3 4 2 3 5 4 3 3 3
#> [5905] 2 4 3 5 5 1 3 2 1 3 3 3 1 3 1 3 1 3 5 3 2 3 2 3 2 4 3 1 3 5 3 3 1 3 3 3
#> [5941] 5 5 2 3 3 1 2 1 4 1 2 2 3 3 5 2 1 2 5 1 3 3 3 3 1 5 2 3 3 1 3 3 3 2 4 1
#> [5977] 5 3 4 3 2 3 5 3 2 4 5 4 3 1 3 3 3 3 4 3 5 3 3 2 5 1 4 5 4 3 3 3 3 1 3 2
#> [6013] 5 1 2 1 2 3 5 3 1 4 1 3 3 1 1 2 3 1 1 2 1 3 3 1 5 3 3 5 4 3 2 3 2 4 3 3
#> [6049] 3 4 5 1 3 3 5 5 3 2 2 5 1 3 4 3 1 2 5 3 3 1 2 2 1 5 2 5 1 3 5 5 2 3 5 4
#> [6085] 3 3 1 5 1 1 3 1 1 1 2 3 1 3 4 3 2 3 2 3 1 4 3 3 3 5 1 1 2 1 2 3 3 1 3 5
#> [6121] 3 1 3 1 1 3 4 1 5 3 2 3 1 4 3 1 3 3 3 1 2 3 3 1 4 4 3 3 2 1 3 4 1 2 3 2
#> [6157] 1 5 2 3 4 2 1 3 3 3 2 4 3 3 5 3 3 5 3 3 4 5 2 4 1 4 5 1 5 1 2 3 1 1 5 3
#> [6193] 1 1 5 3 4 1 3 4 5 1 1 3 1 3 1 2 3 3 3 4 1 1 4 1 2 3 3 5 3 4 2 3 3 3 1 5
#> [6229] 4 1 5 1 1 1 3 3 3 2 5 2 2 2 3 3 4 1 3 4 4 3 2 3 3 3 2 1 3 3 4 4 1 4 5 3
#> [6265] 2 4 2 2 3 3 2 3 3 5 3 2 3 3 1 3 1 3 1 3 5 1 1 2 5 2 3 3 1 3 3 3 4 1 3 1
#> [6301] 5 5 2 2 3 2 3 5 4 2 3 2 3 5 3 3 5 3 5 3 2 4 3 2 3 4 2 4 3 3 3 3 3 3 1 1
#> [6337] 5 3 3 4 3 4 3 5 5 5 1 2 3 2 4 2 4 1 3 3 3 3 1 4 1 2 5 3 3 5 4 3 3 1 3 3
#> [6373] 4 5 1 1 1 1 4 2 2 2 3 2 4 2 5 2 3 3 3 4 2 3 2 2 3 1 3 3 5 4 5 3 2 1 1 3
#> [6409] 3 3 3 1 5 1 3 1 1 3 3 2 3 5 3 3 1 3 1 5 3 3 4 5 5 1 1 1 5 3 3 3 1 4 1 1
#> [6445] 2 4 5 1 5 3 1 5 1 3 4 3 4 2 2 1 3 3 3 3 5 5 3 3 1 2 2 3 3 3 3 1 2 1 3 1
#> [6481] 2 4 3 3 3 3 3 5 3 3 1 3 2 4 1 1 5 3 4 1 3 1 1 1 3 2 2 3 3 3 3 2 1 4 5 3
#> [6517] 2 3 3 3 1 1 3 3 1 4 3 1 3 3 1 4 5 3 1 1 3 3 5 5 3 3 1 2 1 3 3 2 1 3 3 2
#> [6553] 4 1 4 3 4 1 1 1 4 3 3 2 5 2 3 3 3 5 1 3 5 1 4 3 5 2 2 1 3 2 5 3 3 3 2 2
#> [6589] 2 3 4 5 3 3 3 3 1 3 3 5 3 3 3 3 3 2 1 3 3 5 2 3 3 3 5 2 5 3 2 5 3 4 1 5
#> [6625] 1 5 3 5 2 3 5 5 3 4 3 3 2 1 3 3 2 2 3 3 4 1 1 3 3 1 3 3 3 5 2 3 3 3 3 2
#> [6661] 4 5 1 4 5 2 2 1 1 2 2 3 1 3 5 3 5 2 1 4 3 5 2 3 5 4 5 1 5 2 3 2 3 4 2 2
#> [6697] 4 3 3 2 3 3 5 1 4 5 1 4 3 5 3 3 3 5 5 1 2 3 3 1 5 3 1 2 4 5 2 1 3 1 3 1
#> [6733] 5 2 3 3 5 3 3 5 2 1 3 3 4 1 4 3 2 4 5 3 3 2 5 1 3 3 4 5 3 4 1 5 2 4 3 1
#> [6769] 5 3 1 3 3 1 3 4 5 4 2 1 3 4 1 4 2 2 3 5 1 2 2 1 1 3 3 3 3 3 1 2 3 3 3 4
#> [6805] 4 3 2 5 3 1 4 5 3 3 3 3 2 3 3 3 3 1 2 3 2 2 1 1 3 1 2 5 1 3 1 3 3 5 1 4
#> [6841] 2 1 3 5 2 5 3 3 3 3 5 1 1 3 5 3 3 5 4 4 4 3 5 4 3 1 3 3 5 3 2 3 3 5 5 4
#> [6877] 5 3 3 1 3 5 3 1 3 3 4 5 1 3 1 3 1 1 3 5 2 3 3 4 3 1 1 3 1 1 3 3 4 2 2 3
#> [6913] 5 3 3 4 4 3 5 2 5 1 2 3 4 1 5 1 5 3 1 3 5 4 5 3 5 4 3 5 2 5 3 3 3 5 3 1
#> [6949] 4 4 3 3 1 3 2 1 3 1 3 3 1 4 3 2 3 5 3 3 3 2 5 5 3 5 4 5 1 1 3 3 2 4 4 3
#> [6985] 2 3 1 2 3 2 3 2 3 3 3 3 2 3 3 4 4 3 3 1 3 2 3 3 2 3 3 3 3 5 3 4 1 5 5 1
#> [7021] 2 2 1 3 1 3 4 2 1 3 5 3 2 1 1 1 2 3 1 1 3 5 3 3 3 5 1 4 3 1 5 1 4 5 5 3
#> [7057] 3 4 5 3 1 5 3 4 3 3 2 2 5 1 1 3 3 1 3 5 5 5 1 2 2 2 3 3 4 1 3 3 4 3 1 3
#> [7093] 3 5 3 4 5 1 3 4 3 3 1 5 1 3 3 5 5 2 4 3 4 3 1 2 5 3 5 1 3 1 1 2 3 2 3 2
#> [7129] 2 1 3 2 3 3 3 5 2 5 3 2 5 4 3 1 1 2 4 3 3 4 3 5 3 5 1 2 1 2 5 2 1 3 1 2
#> [7165] 4 3 5 1 2 3 2 3 5 4 1 5 4 1 5 3 3 3 4 5 5 3 1 2 2 3 3 3 5 5 3 1 3 1 4 3
#> [7201] 4 3 5 5 3 3 3 5 3 2 3 3 2 3 3 5 3 3 3 3 5 4 4 1 2 3 1 4 3 5 3 5 5 3 5 3
#> [7237] 3 2 3 3 4 3 2 1 3 3 3 2 4 3 5 3 5 5 1 3 5 5 3 4 3 3 1 5 2 2 3 5 3 1 2 3
#> [7273] 4 1 3 5 3 1 5 1 3 2 1 1 2 2 3 1 2 3 4 4 2 2 5 5 4 1 1 3 3 3 4 3 1 1 1 3
#> [7309] 1 1 3 3 3 5 3 2 1 2 5 4 3 3 1 1 5 3 3 1 1 1 1 3 3 5 3 4 1 4 1 2 1 2 1 1
#> [7345] 2 1 3 1 3 5 1 3 4 1 3 3 3 4 4 1 3 2 1 3 2 2 4 1 5 1 1 5 2 5 3 1 5 3 2 4
#> [7381] 5 2 1 3 4 3 2 3 3 3 1 3 3 3 2 3 3 4 1 4 5 5 5 5 5 3 1 5 3 5 2 5 5 2 1 4
#> [7417] 5 5 1 2 5 2 1 3 3 1 3 3 3 4 4 1 4 4 3 1 3 3 4 5 3 5 3 3 1 3 2 3 5 2 3 3
#> [7453] 5 2 4 1 3 1 4 2 3 5 5 3 1 2 3 3 1 1 4 5 1 1 1 3 5 5 1 5 1 3 3 5 5 3 1 5
#> [7489] 1 3 4 3 3 1 1 5 1 5 3 3 5 1 2 3 1 3 1 2 3 4 5 1 3 3 1 5 5 3 3 4 4 5 1 1
#> [7525] 5 3 2 4 3 3 3 1 3 1 5 1 4 2 5 2 1 4 3 1 1 3 5 3 3 3 3 3 1 5 3 3 3 3 2 1
#> [7561] 1 4 5 2 3 3 3 2 1 5 1 5 3 3 1 4 1 2 5 3 4 3 4 3 3 3 2 5 5 3 1 3 1 2 2 3
#> [7597] 4 4 3 4 3 5 4 2 5 3 2 1 5 1 3 3 3 3 5 3 3 3 1 5 3 3 1 1 4 2 2 2 3 1 1 5
#> [7633] 3 3 1 5 1 2 1 3 1 2 3 5 3 2 5 1 1 4 1 5 3 3 4 2 3 1 4 3 3 1 3 3 5 5 5 4
#> [7669] 4 5 3 1 1 3 5 1 3 4 5 5 3 1 1 1 3 5 4 3 5 3 1 3 4 1 5 3 2 3 5 3 1 5 4 4
#> [7705] 3 1 2 5 4 3 4 2 1 3 2 1 4 1 1 5 3 1 1 1 3 3 3 3 3 2 1 1 3 2 3 4 5 5 3 3
#> [7741] 1 2 2 3 3 1 1 4 1 3 3 2 2 2 3 1 2 1 3 2 3 3 3 3 3 2 3 3 2 2 5 2 5 3 3 1
#> [7777] 2 1 3 5 1 3 3 4 5 4 5 1 4 3 3 1 1 4 1 1 3 5 3 1 2 3 3 3 5 3 4 4 3 1 1 3
#> [7813] 3 1 2 5 3 3 2 5 3 5 3 2 4 2 3 5 2 3 1 3 3 5 1 5 5 5 3 5 3 3 4 1 3 2 1 3
#> [7849] 3 3 3 3 1 1 2 1 1 3 1 3 5 1 1 2 5 5 3 4 2 3 3 2 3 3 3 5 4 5 2 3 4 5 5 5
#> [7885] 5 3 4 3 2 1 3 3 1 2 2 1 5 3 4 3 5 3 5 3 3 1 3 5 2 3 1 3 5 5 1 5 3 1 4 3
#> [7921] 3 4 1 2 1 1 1 3 3 3 1 3 2 5 1 1 3 3 3 3 3 4 4 3 3 3 2 1 1 2 5 3 3 3 3 3
#> [7957] 1 2 1 1 3 1 3 4 2 3 3 3 3 2 4 5 3 3 1 3 4 4 3 3 1 1 2 1 1 3 5 3 2 1 3 1
#> [7993] 3 3 1 3 3 2 3 1 3 4 3 2 4 3 3 3 3 3 3 5 3 3 1 2 3 4 1 3 3 3 3 3 2 3 3 3
#> [8029] 3 1 1 2 5 1 3 5 1 1 3 5 3 3 2 4 4 3 3 4 3 1 2 4 3 2 1 2 5 2 3 2 3 3 3 1
#> [8065] 1 1 5 4 1 2 3 4 2 1 3 3 3 5 3 3 4 5 3 3 3 5 5 1 1 1 1 3 2 3 1 1 3 1 4 5
#> [8101] 3 3 5 2 5 1 2 2 3 2 3 5 2 1 2 3 4 3 4 5 3 3 3 4 3 2 2 2 3 3 3 2 1 2 3 1
#> [8137] 5 1 3 3 4 5 1 5 5 1 3 3 5 5 2 4 5 1 1 1 3 1 3 1 1 3 4 2 3 5 4 3 5 2 5 4
#> [8173] 2 3 3 1 5 3 3 4 2 5 2 2 3 1 1 5 1 2 4 2 1 3 1 5 3 3 4 3 5 5 1 4 5 3 2 3
#> [8209] 3 5 2 2 2 3 2 5 1 3 3 3 3 1 3 4 2 3 4 3 4 3 5 3 2 3 3 1 4 2 3 3 1 3 5 2
#> [8245] 2 3 1 3 5 3 3 3 4 5 3 1 2 3 2 5 1 4 1 2 1 3 4 3 3 3 3 5 2 3 3 5 1 3 3 5
#> [8281] 1 4 1 5 1 5 3 4 1 5 1 3 3 3 3 1 3 1 1 1 4 5 3 1 3 5 3 3 3 2 5 1 1 3 4 5
#> [8317] 4 3 1 2 1 5 4 1 5 4 3 3 1 5 4 3 3 3 1 2 5 5 1 3 3 5 5 5 5 1 3 3 3 1 3 3
#> [8353] 4 4 5 3 4 1 3 2 3 3 2 5 1 2 3 3 1 2 1 3 1 5 1 3 2 2 3 5 5 2 5 1 3 3 3 3
#> [8389] 5 3 3 5 4 4 3 3 4 1 2 4 5 1 5 1 3 3 3 5 5 3 3 3 3 3 3 5 1 3 2 5 4 4 3 3
#> [8425] 1 4 1 4 1 3 1 3 4 2 3 3 3 3 3 3 4 3 3 5 2 3 3 1 3 1 4 5 1 1 3 2 1 3 4 1
#> [8461] 4 3 1 3 3 3 2 1 5 3 3 3 3 5 3 4 2 1 3 3 4 1 3 1 3 5 1 2 1 2 3 5 3 2 3 5
#> [8497] 3 5 1 4 5 2 2 3 3 5 3 2 1 3 3 4 1 3 2 3 3 3 5 1 3 3 3 3 1 5 2 1 2 1 4 2
#> [8533] 1 1 3 1 3 2 3 2 3 3 3 5 1 2 3 5 1 5 5 4 5 1 2 4 2 3 3 5 3 3 2 1 4 5 3 2
#> [8569] 5 4 3 3 5 3 1 3 1 3 5 1 4 3 1 3 4 3 4 1 5 4 5 4 3 1 4 4 1 3 3 5 3 2 1 3
#> [8605] 4 5 3 4 2 4 3 2 1 3 3 1 5 5 2 1 1 3 1 1 4 3 4 4 3 3 3 3 5 3 4 3 3 3 2 4
#> [8641] 1 3 3 1 1 1 4 1 3 1 3 1 2 3 3 4 3 3 1 1 3 1 5 1 2 5 3 3 4 1 3 4 4 3 1 1
#> [8677] 2 3 1 2 1 5 1 5 3 1 1 4 3 1 1 3 3 1 4 1 2 2 5 5 3 4 3 5 5 5 5 3 1 3 5 1
#> [8713] 3 2 2 1 5 4 5 1 1 1 2 2 4 3 1 2 3 3 1 5 1 3 2 5 2 2 1 1 3 1 5 4 3 1 1 5
#> [8749] 3 3 1 1 3 3 3 2 3 2 5 5 3 2 4 3 2 5 1 3 3 3 4 1 1 5 3 5 2 2 1 1 3 3 3 2
#> [8785] 3 1 3 1 2 1 2 3 3 2 5 2 2 3 2 1 3 3 2 2 5 1 2 3 1 1 2 2 2 3 5 1 3 2 3 3
#> [8821] 3 3 3 2 3 3 5 2 2 3 4 5 1 3 2 5 1 3 1 1 5 5 5 1 3 3 3 1 1 3 3 5 4 3 3 3
#> [8857] 1 5 4 2 2 1 1 1 1 3 2 3 2 3 5 3 2 3 5 2 5 3 5 5 3 3 3 2 5 3 5 3 5 2 1 5
#> [8893] 3 3 3 3 3 5 3 3 5 3 1 4 3 3 2 3 1 3 3 2 1 5 3 1 5 2 1 3 2 1 1 1 1 4 2 3
#> [8929] 1 5 4 1 5 1 3 4 3 2 2 3 1 2 3 3 5 1 1 1 4 5 2 3 3 3 5 2 3 2 5 4 3 2 4 4
#> [8965] 1 3 1 5 5 2 5 1 5 3 3 4 4 5 3 3 3 2 1 5 3 3 3 3 5 1 4 1 3 2 2 3 5 3 1 5
#> [9001] 5 3 3 1 3 3 4 1 5 1 3 3 3 4 1 5 1 2 2 1 4 3 2 3 3 4 3 1 3 4 4 5 3 4 1 1
#> [9037] 2 3 1 3 3 4 2 3 5 3 2 1 5 3 1 2 3 3 4 5 1 3 1 5 4 5 4 3 4 2 2 5 3 4 1 2
#> [9073] 1 3 3 3 3 3 4 5 4 1 3 1 4 5 1 3 2 5 3 2 3 4 1 3 1 2 4 2 3 4 5 4 1 1 3 1
#> [9109] 3 3 3 5 5 3 5 3 1 3 3 3 1 4 4 3 3 3 3 1 3 4 1 3 1 3 3 4 3 3 5 5 1 3 5 3
#> [9145] 5 5 3 1 3 1 3 2 1 1 4 4 3 3 3 3 1 2 1 3 4 4 1 2 3 3 3 2 3 3 3 1 1 1 4 4
#> [9181] 1 4 1 3 2 3 1 1 1 1 1 3 2 1 5 5 1 3 5 5 1 2 3 4 3 5 1 4 4 5 1 1 1 3 3 4
#> [9217] 5 2 3 2 2 2 5 3 3 3 4 1 3 1 1 3 2 2 5 4 5 1 1 3 3 3 4 3 3 1 4 3 3 2 5 5
#> [9253] 3 5 3 3 1 3 3 3 3 5 3 3 2 2 2 3 3 5 1 3 3 2 5 4 3 3 3 5 4 1 3 2 3 1 1 3
#> [9289] 1 1 3 3 3 3 5 2 3 5 1 2 3 1 1 3 3 1 3 3 3 2 2 3 1 2 5 4 2 1 3 1 2 5 1 3
#> [9325] 4 3 2 3 1 1 1 4 5 4 3 3 1 3 4 3 1 4 3 3 3 2 3 3 3 5 3 3 2 3 3 1 5 5 3 3
#> [9361] 1 1 5 1 4 1 5 3 2 3 5 2 5 1 4 4 3 3 3 3 3 3 1 1 1 3 3 3 5 5 3 2 5 1 3 2
#> [9397] 4 3 4 2 2 3 3 3 5 5 5 1 4 5 5 3 1 3 3 1 3 2 3 5 3 3 2 5 4 3 5 3 3 5 5 3
#> [9433] 4 3 3 3 3 5 3 1 1 4 2 1 5 1 5 1 3 3 3 1 3 3 1 2 1 5 1 2 1 5 4 3 5 4 4 2
#> [9469] 2 5 4 4 2 3 1 5 5 1 5 3 1 3 5 1 2 3 1 3 3 1 2 5 3 3 3 3 1 3 3 5 3 2 3 1
#> [9505] 1 4 1 3 5 4 2 2 3 5 3 1 3 3 2 1 3 1 3 3 1 5 3 4 3 4 2 3 3 3 2 3 3 4 3 5
#> [9541] 3 1 2 4 3 1 5 3 3 3 3 4 2 3 1 3 1 5 4 1 3 4 3 4 3 3 3 5 5 1 3 3 3 3 3 1
#> [9577] 3 1 2 2 2 3 1 2 3 3 2 2 2 3 2 1 1 4 2 2 4 4 4 1 3 1 4 1 3 1 3 3 4 3 3 2
#> [9613] 4 5 4 2 3 1 4 4 3 2 1 3 4 5 3 4 1 3 3 3 2 2 4 5 3 3 1 5 3 3 3 3 4 1 1 5
#> [9649] 1 3 3 1 3 4 5 1 3 2 3 2 3 4 1 1 2 4 1 2 5 1 2 1 5 1 3 3 3 3 4 1 2 3 5 1
#> [9685] 4 4 5 5 3 2 2 3 3 2 5 3 2 4 4 1 1 5 3 5 1 1 5 4 3 5 3 3 3 4 4 5 1 5 2 1
#> [9721] 1 3 3 2 3 5 1 1 1 3 2 3 3 5 5 5 1 1 1 4 3 1 3 1 4 1 3 3 2 3 5 3 3 5 1 1
#> [9757] 3 5 3 3 1 4 3 3 3 3 1 4 3 3 2 4 3 1 4 3 3 3 5 4 3 5 3 3 3 3 3 5 3 4 4 2
#> [9793] 5 4 1 3 4 3 1 2 2 3 3 3 1 4 1 3 1 5 1 1 3 3 3 1 1 5 1 5 3 3 4 1 1 1 1 1
#> [9829] 1 2 2 1 3 5 1 2 3 3 5 3 3 2 3 2 2 1 1 1 3 3 2 4 3 3 3 1 4 5 3 4 3 1 3 5
#> [9865] 2 5 3 5 5 4 5 1 4 3 3 1 4 2 3 4 1 5 5 3 3 3 2 4 3 3 3 2 5 1 5 3 5 3 2 4
#> [9901] 3 1 3 3 2 3 4 1 1 4 1 1 1 3 4 1 3 2 1 1 3 1 3 1 3 1 3 5 5 1 1 1 1 3 1 4
#> [9937] 2 4 2 4 4 3 4 3 3 3 3 3 4 5 3 3 1 3 2 3 3 1 2 4 1 1 3 3 3 5 3 3 3 3 5 5
#> [9973] 5 3 3 1 1 5 3 5 5 2 2 3 1 2 2 2 2 3 3 1 3 3 1 5 3 5 5 5 5 4 3 2 2 3 3 1
#> [10009] 3 2 5 1 1 3 3 2 4 4 5 5 5 1 2 1 1 3 5 3 3 3 4 5 1 1 4 2 3 5 5 2 3 3 2 3
#> [10045] 3 5 3 3 3 1 3 3 2 3 5 1 5 1 4 1 5 5 2 3 4 2 3 2 3 3 3 3 2 2 1 1 1 2 1 1
#> [10081] 5 1 2 4 2 4 1 3 1 1 3 1 3 1 2 3 3 3 4 3 5 1 1 3 4 1 4 4 5 3 1 3 5 2 3 3
#> [10117] 4 3 3 1 5 3 3 2 4 2 3 5 1 4 3 2 3 3 1 5 1 4 1 2 1 5 2 3 3 4 2 2 3 5 4 3
#> [10153] 3 2 3 4 1 2 4 5 1 5 3 2 5 2 2 1 3 4 3 2 3 3 5 1 3 3 3 4 1 5 1 5 2 5 1 3
#> [10189] 4 3 1 3 4 3 1 1 1 5 1 5 1 5 4 4 5 3 4 2 3 1 1 5 1 2 1 3 3 5 1 3 5 5 2 5
#> [10225] 3 3 3 5 5 1 3 1 5 4 3 5 1 3 1 1 4 1 4 1 5 3 3 3 2 3 2 1 1 3 5 1 1 3 1 4
#> [10261] 1 3 1 3 3 4 3 3 1 3 5 2 2 1 3 3 1 5 1 1 3 5 4 5 3 1 2 3 4 3 3 5 3 1 3 4
#> [10297] 4 5 1 5 3 1 2 2 3 4 5 5 3 1 2 5 1 4 1 2 3 3 1 3 4 3 2 1 3 3 1 3 4 3 3 4
#> [10333] 2 1 3 1 3 1 2 3 1 3 2 5 4 3 3 3 3 1 3 1 3 4 3 2 1 1 3 3 3 2 3 3 3 1 3 5
#> [10369] 3 5 5 5 3 5 4 3 3 1 3 2 5 3 3 4 4 3 3 1 3 3 3 3 3 3 5 4 3 2 1 5 1 2 4 1
#> [10405] 1 5 2 4 5 3 1 1 3 3 1 2 4 3 5 2 2 2 1 1 5 5 1 3 2 4 3 5 4 4 3 4 3 5 4 2
#> [10441] 3 3 1 5 3 5 3 1 2 1 3 3 1 5 2 3 3 2 3 3 1 2 5 1 3 3 3 1 3 5 1 3 3 3 3 5
#> [10477] 5 5 4 1 1 4 3 5 3 5 3 1 5 4 2 1 5 3 4 1 2 3 1 1 2 1 4 2 3 3 2 3 3 3 3 3
#> [10513] 3 4 3 2 3 1 3 2 3 1 4 5 4 3 4 1 3 5 1 2 3 3 3 5 1 2 1 2 5 1 5 1 5 3 3 1
#> [10549] 5 3 1 3 4 2 4 5 3 1 3 4 3 1 3 3 1 1 3 3 1 3 3 5 4 1 2 1 1 3 3 2 3 3 4 3
#> [10585] 4 1 3 3 3 4 3 5 3 3 2 3 3 1 4 2 3 3 1 1 1 5 5 5 2 4 3 3 2 1 3 4 5 5 1 3
#> [10621] 3 1 3 1 1 5 1 1 3 5 4 1 1 4 5 3 4 1 5 3 5 2 1 3 5 1 2 3 5 4 5 3 1 1 1 4
#> [10657] 1 2 4 3 1 2 3 1 5 1 3 1 4 3 4 3 3 4 5 2 4 3 2 2 2 1 4 3 1 4 3 3 1 4 3 5
#> [10693] 4 5 3 3 4 1 2 3 3 1 1 3 1 5 3 4 1 1 3 5 5 3 3 4 3 5 3 2 2 5 2 4 1 5 3 3
#> [10729] 4 3 2 3 1 3 3 2 5 1 4 3 3 3 3 2 1 3 1 5 3 4 1 5 3 1 3 2 2 2 5 3 1 1 5 5
#> [10765] 3 3 3 3 1 1 3 4 4 1 5 2 3 5 3 3 3 1 4 1 2 3 1 2 1 2 1 4 2 2 3 2 3 4 3 5
#> [10801] 3 3 3 3 5 4 1 5 3 1 3 4 5 4 1 3 1 4 5 1 2 5 5 3 3 1 2 5 3 3 4 5 3 3 1 3
#> [10837] 1 1 3 3 5 2 5 3 3 3 3 4 4 5 1 3 5 5 5 5 3 3 1 5 3 3 3 3 3 3 3 3 2 3 4 2
#> [10873] 5 4 3 4 3 3 3 3 2 5 3 3 3 1 1 3 4 1 3 1 2 3 1 3 3 2 1 1 2 2 5 5 2 5 3 3
#> [10909] 4 2 1 5 1 3 3 1 2 1 3 1 2 5 2 3 3 2 1 3 3 5 3 1 1 5 5 3 4 1 1 5 2 3 5 1
#> [10945] 5 1 1 4 1 5 5 3 3 5 3 4 3 1 1 1 4 1 3 3 3 5 3 1 1 2 3 2 1 4 2 3 1 3 4 5
#> [10981] 2 1 1 4 1 4 3 3 1 5 1 4 1 5 5 2 5 4 1 1 3 4 3 3 5 3 1 3 1 3 5 3 3 1 3 4
#> [11017] 3 5 2 5 5 3 3 2 1 3 4 3 3 3 2 1 1 2 1 1 3 1 4 3 1 2 3 3 1 5 4 3 3 2 3 3
#> [11053] 3 5 4 3 1 5 5 1 3 4 5 2 1 4 2 2 3 3 1 1 2 1 1 5 5 4 1 3 3 3 3 3 4 5 3 3
#> [11089] 3 3 3 4 5 5 1 1 3 3 3 1 5 2 1 5 2 5 4 3 2 5 5 2 1 3 3 3 1 1 3 1 3 1 2 3
#> [11125] 3 2 5 5 3 3 4 1 4 1 3 3 2 3 5 2 3 4 3 4 2 4 4 3 3 4 5 2 3 3 1 5 3 4 3 5
#> [11161] 3 4 3 5 1 2 5 4 5 2 3 4 1 4 4 5 1 3 3 3 3 1 3 5 3 2 5 1 1 3 5 4 5 3 5 1
#> [11197] 3 1 3 3 4 5 5 1 1 2 3 1 1 3 1 3 1 3 3 3 3 3 3 4 1 3 1 1 1 3 3 4 1 5 1 3
#> [11233] 1 1 1 3 5 1 5 3 3 3 2 3 2 5 3 5 5 1 3 4 3 3 2 1 1 3 3 3 1 4 1 3 4 2 3 2
#> [11269] 4 5 3 3 1 3 3 1 2 4 4 4 5 4 1 3 5 5 5 4 5 3 1 3 3 4 3 5 3 5 3 2 2 5 5 3
#> [11305] 1 5 1 5 1 2 2 3 3 1 3 5 3 4 5 5 5 3 1 3 3 5 2 5 3 3 1 2 5 4 3 1 5 1 4 1
#> [11341] 2 4 1 1 2 1 3 3 1 3 3 3 3 3 3 4 3 5 2 3 5 3 3 4 3 1 4 4 2 5 3 5 1 5 5 3
#> [11377] 1 2 3 2 1 3 1 1 3 1 5 3 2 2 4 3 1 5 3 3 5 3 4 3 3 5 4 3 2 3 3 3 1 5 2 3
#> [11413] 3 2 1 5 1 4 5 5 2 1 3 3 1 1 3 3 1 3 4 5 5 3 1 1 1 1 1 3 3 1 2 1 3 3 5 1
#> [11449] 3 3 3 3 3 1 3 5 3 1 4 4 3 5 3 1 4 5 1 2 5 3 1 1 4 3 3 2 3 5 5 4 4 1 4 1
#> [11485] 4 4 5 4 3 3 1 5 3 1 1 5 3 3 3 4 5 3 5 1 5 2 3 2 3 3 2 5 2 3 1 1 3 4 3 2
#> [11521] 3 3 1 5 5 5 1 3 5 2 5 1 5 5 4 1 1 3 1 3 5 3 4 5 3 2 3 5 3 1 3 4 3 3 1 5
#> [11557] 1 3 3 2 3 3 2 5 3 4 3 1 1 2 5 5 1 5 1 2 3 1 5 3 5 3 4 3 3 4 3 5 1 3 5 3
#> [11593] 1 3 3 5 5 1 3 3 3 4 3 1 3 3 3 2 3 1 1 2 3 3 4 3 2 2 5 1 5 2 3 3 1 3 4 3
#> [11629] 2 1 3 3 2 3 4 3 3 3 1 3 3 3 1 1 1 4 2 4 1 2 1 5 3 3 3 4 4 2 1 5 2 3 2 1
#> [11665] 3 3 4 3 5 2 3 5 5 5 4 1 3 5 5 1 5 3 3 4 1 2 1 3 5 3 1 3 3 4 2 3 3 1 2 1
#> [11701] 4 3 3 3 4 1 3 3 3 3 1 3 3 4 3 5 5 4 5 4 5 4 4 4 2 4 3 1 5 1 1 4 5 1 5 5
#> [11737] 3 1 5 3 4 1 3 3 3 3 3 1 3 3 4 1 1 2 4 3 2 3 3 3 1 5 3 3 1 4 2 3 4 3 3 4
#> [11773] 3 3 1 3 2 3 3 3 1 1 1 3 4 3 1 1 2 1 1 1 4 1 3 3 2 1 1 5 3 1 5 3 5 2 1 3
#> [11809] 1 3 3 3 3 2 2 5 3 3 2 3 1 4 1 5 5 3 3 2 1 4 3 5 3 4 1 1 3 1 5 1 5 1 5 5
#> [11845] 5 5 4 5 3 4 3 3 5 4 1 5 5 2 3 3 1 1 5 5 3 3 3 2 3 4 3 1 5 2 3 3 1 3 3 3
#> [11881] 3 3 1 5 2 5 1 2 1 3 3 3 3 3 4 3 3 2 3 5 1 3 3 2 3 2 1 5 5 1 3 3 1 3 5 3
#> [11917] 3 3 2 3 1 5 3 3 5 5 2 4 1 1 3 3 1 3 1 3 3 2 3 2 5 3 5 5 5 3 3 5 3 1 3 3
#> [11953] 3 3 5 3 5 5 5 3 3 3 1 3 3 5 1 5 5 5 5 1 3 3 2 1 3 3 3 2 5 2 5 2 5 1 2 1
#> [11989] 5 1 5 3 3 2 1 5 3 3 2 1 3 3 5 3 3 1 2 1 3 5 3 1 3 4 3 5 3 4 3 1 1 3 3 3
#> [12025] 3 3 3 1 1 3 1 2 4 3 5 3 4 3 3 3 1 2 1 4 1 3 2 5 3 5 5 4 3 3 2 1 4 3 4 1
#> [12061] 2 5 1 2 5 3 3 4 4 1 3 2 4 1 5 2 3 1 4 5 5 3 3 3 3 5 2 4 1 5 2 3 5 3 2 3
#> [12097] 4 1 5 3 4 3 4 1 3 3 3 3 4 2 3 1 3 2 1 2 5 5 3 3 3 3 3 1 5 5 3 1 3 2 1 1
#> [12133] 1 1 3 3 3 1 2 3 3 5 5 4 2 3 3 2 3 2 2 3 3 3 1 5 3 2 1 2 4 1 1 3 4 1 4 1
#> [12169] 3 3 1 5 2 5 5 5 4 3 2 2 5 5 3 1 2 1 5 2 4 3 3 3 3 5 4 2 1 3 3 4 1 3 3 3
#> [12205] 5 3 5 1 1 3 1 1 1 2 3 1 1 2 5 4 3 5 5 4 3 3 4 2 4 4 1 3 1 3 4 5 5 2 1 3
#> [12241] 5 5 4 3 3 3 5 1 3 3 5 2 2 5 3 5 3 2 3 1 2 1 1 2 5 3 3 4 3 1 2 3 3 3 4 3
#> [12277] 3 5 3 5 3 1 2 2 5 1 4 1 5 3 5 3 1 3 3 3 3 5 3 4 1 2 3 3 4 3 3 5 4 1 4 3
#> [12313] 2 4 5 1 2 1 4 1 1 5 3 1 1 2 4 4 3 1 3 3 5 5 5 1 4 1 3 1 3 3 5 1 4 3 1 1
#> [12349] 4 3 5 1 1 3 5 1 2 1 3 5 2 5 5 2 3 1 3 3 1 3 3 2 3 2 1 1 3 4 3 3 1 2 1 5
#> [12385] 5 4 1 3 1 3 2 2 5 5 5 3 2 4 5 4 3 5 3 5 5 5 4 3 2 3 1 3 3 3 3 2 2 3 5 1
#> [12421] 5 3 5 1 2 3 1 5 3 3 3 2 1 3 1 1 4 3 3 1 3 2 2 3 5 5 1 5 1 3 5 3 4 4 5 5
#> [12457] 4 2 3 4 2 1 3 3 3 1 5 5 2 3 3 3 3 3 1 5 1 1 1 3 5 3 2 1 3 5 2 1 3 3 1 3
#> [12493] 1 3 3 3 4 3 1 5 4 4 5 1 3 4 5 3 2 3 5 5 1 3 3 3 1 4 3 3 1 1 1 5 3 1 3 3
#> [12529] 3 1 3 5 3 1 2 3 4 3 3 1 5 1 3 4 3 3 3 3 1 3 3 3 5 1 4 3 5 1 2 3 2 4 3 1
#> [12565] 4 3 1 4 5 4 1 1 3 1 3 4 5 2 5 4 3 2 3 2 1 5 1 4 1 5 4 2 3 2 3 2 3 3 4 3
#> [12601] 3 1 1 4 4 2 1 4 3 3 2 3 3 3 3 3 1 3 3 2 3 3 3 1 3 5 4 3 5 3 3 3 4 3 3 1
#> [12637] 3 5 2 4 3 3 1 5 2 3 3 3 2 2 5 5 1 1 3 3 5 1 3 2 1 1 3 3 5 3 2 1 3 5 3 5
#> [12673] 2 5 3 3 3 4 1 5 4 3 2 4 2 3 4 1 4 2 1 3 2 1 5 2 3 1 5 3 3 3 3 1 1 4 5 2
#> [12709] 2 5 1 3 3 1 1 5 3 1 5 3 1 2 1 1 3 5 3 5 2 5 1 3 3 3 5 3 3 5 5 3 3 4 4 3
#> [12745] 2 1 3 4 3 3 4 3 5 1 5 4 5 3 5 5 4 1 5 4 3 2 4 3 1 5 3 2 5 4 1 3 3 5 5 5
#> [12781] 3 2 5 3 3 1 3 5 3 5 1 3 5 3 2 1 1 3 3 3 2 1 3 4 3 5 3 2 4 5 5 1 1 5 4 1
#> [12817] 4 5 2 2 1 2 3 1 1 2 5 2 1 1 3 3 3 3 4 4 2 4 3 1 3 3 2 3 4 4 1 5 2 3 5 2
#> [12853] 2 2 1 5 3 4 5 2 3 3 5 3 2 2 2 3 1 5 2 3 1 5 2 5 4 4 3 2 1 3 2 5 3 3 3 4
#> [12889] 3 1 3 1 2 3 3 1 1 1 3 1 1 1 1 3 5 1 5 3 2 3 3 3 3 3 4 1 4 3 3 3 3 1 3 3
#> [12925] 1 3 5 1 3 3 5 1 3 5 1 3 3 4 5 5 3 5 2 4 3 2 3 2 1 3 3 1 3 3 3 4 3 3 1 5
#> [12961] 5 1 1 1 2 5 5 3 4 1 2 3 3 2 3 3 1 3 1 3 5 3 3 3 3 5 5 3 1 5 4 1 3 3 5 2
#> [12997] 1 5 3 2 1 1 2 1 3 3 3 3 3 5 3 1 5 1 5 3 3 5 2 5 1 1 3 5 3 3 1 3 3 3 4 3
#> [13033] 3 3 3 3 1 5 5 4 3 3 1 3 5 4 3 3 1 3 1 1 4 3 2 2 3 3 3 3 3 3 3 3 5 2 1 5
#> [13069] 2 1 2 1 5 2 3 3 1 3 5 3 4 2 1 3 1 4 3 1 5 3 2 4 2 3 4 3 3 5 3 3 3 2 3 5
#> [13105] 1 1 5 3 1 1 1 3 3 2 5 2 1 2 3 4 3 3 4 4 3 5 3 2 5 3 5 5 3 1 3 5 2 5 3 3
#> [13141] 5 2 1 5 5 5 4 3 2 3 4 4 5 3 3 1 5 5 3 5 5 5 2 1 4 4 2 3 3 3 5 3 1 3 5 1
#> [13177] 3 2 5 4 5 1 5 4 5 3 4 3 3 3 3 3 3 2 2 1 1 3 2 2 1 3 3 1 2 1 2 4 1 5 3 5
#> [13213] 3 5 3 2 5 1 5 4 1 3 1 5 3 1 3 2 1 3 4 3 4 4 4 2 4 3 1 3 2 4 5 1 5 3 2 1
#> [13249] 4 1 5 3 4 3 1 2 3 5 1 5 5 1 4 5 3 3 3 1 1 2 4 2 3 5 2 3 3 5 5 3 3 4 5 3
#> [13285] 4 1 5 2 2 2 2 3 3 2 3 5 5 4 3 2 3 3 5 3 4 5 5 3 3 3 5 1 1 1 3 1 1 2 2 3
#> [13321] 1 4 3 5 3 3 3 4 3 2 1 2 5 5 3 5 3 5 1 3 3 3 5 3 5 5 1 4 2 5 2 1 3 3 4 5
#> [13357] 3 1 2 2 5 3 4 5 5 1 5 5 4 3 4 4 4 4 3 1 2 3 3 4 1 3 3 3 3 3 5 3 5 5 1 5
#> [13393] 3 3 3 5 2 2 3 4 5 3 1 4 1 1 5 5 4 5 1 5 3 3 2 1 3 3 2 1 5 5 1 4 3 1 2 2
#> [13429] 3 3 3 4 5 3 5 3 3 3 3 1 3 4 3 3 3 2 2 4 3 3 1 3 2 3 2 4 1 5 1 5 1 3 5 1
#> [13465] 1 3 1 3 3 3 3 5 3 3 1 4 3 1 4 2 3 3 1 3 3 3 3 3 1 1 1 3 4 1 3 1 3 3 5 1
#> [13501] 3 5 3 5 3 3 4 5 5 5 3 3 3 4 3 3 5 1 3 4 1 3 3 3 4 4 1 5 3 3 1 1 2 1 3 3
#> [13537] 5 1 3 2 3 3 3 5 1 4 5 5 2 2 3 3 5 3 3 3 5 3 2 5 3 2 3 1 2 1 4 3 2 3 2 3
#> [13573] 5 4 3 2 1 5 1 3 5 4 3 1 3 4 3 3 1 1 3 3 3 5 5 1 1 5 1 3 3 1 5 3 1 2 5 5
#> [13609] 3 1 3 3 3 3 1 1 4 2 2 3 1 2 1 3 3 1 3 3 3 1 1 1 1 1 3 2 3 3 3 1 1 3 3 4
#> [13645] 5 3 5 3 3 1 5 5 2 2 4 1 3 4 3 3 3 3 3 5 1 3 5 3 2 5 3 3 3 3 2 3 3 3 3 4
#> [13681] 1 1 4 3 1 2 3 1 3 1 5 3 1 5 2 4 3 3 4 3 5 3 1 1 5 3 4 3 4 4 3 1 3 2 2 5
#> [13717] 1 3 3 2 1 4 1 4 1 3 3 5 1 3 3 1 3 4 3 3 3 1 1 4 3 3 1 1 5 2 2 3 3 4 4 5
#> [13753] 3 5 1 3 3 3 1 5 2 1 3 3 5 4 1 3 2 5 5 1 3 3 4 3 1 2 2 5 2 3 3 5 4 2 5 1
#> [13789] 3 3 3 1 3 1 3 2 2 3 3 3 3 3 5 5 3 3 3 1 2 5 1 5 1 3 3 3 4 1 2 3 3 2 2 3
#> [13825] 2 3 1 1 3 3 5 1 3 4 3 5 1 5 1 5 4 4 3 5 4 3 2 1 5 1 3 1 1 5 3 4 3 5 3 2
#> [13861] 3 2 3 2 1 2 4 1 1 5 3 1 3 3 4 5 3 3 2 1 1 3 4 5 3 3 1 5 4 3 1 3 3 3 3 5
#> [13897] 2 5 2 3 5 4 3 1 1 3 5 4 1 3 3 3 2 2 3 2 4 5 3 3 5 2 3 5 3 3 1 4 1 3 1 3
#> [13933] 1 1 2 3 3 1 2 5 5 1 5 1 3 3 1 1 2 3 3 3 3 3 3 3 1 4 2 1 5 3 2 5 1 1 1 3
#> [13969] 3 2 3 3 3 3 4 1 3 3 4 5 1 2 1 3 2 1 3 3 3 3 2 5 1 3 1 3 2 5 2 5 4 4 4 4
#> [14005] 3 4 3 4 5 3 5 4 2 1 3 4 2 5 1 3 2 3 3 5 4 4 1 1 4 5 3 1 1 3 3 2 1 2 3 1
#> [14041] 3 2 3 2 2 3 1 5 5 3 1 2 1 2 4 1 5 5 1 3 3 4 5 3 2 2 3 3 1 1 3 3 1 3 3 3
#> [14077] 3 1 3 3 5 5 5 5 4 3 1 1 3 5 3 3 4 2 3 3 2 3 3 2 1 3 1 1 4 3 3 3 1 4 5 1
#> [14113] 4 3 3 3 1 3 2 1 3 1 1 1 3 3 3 5 5 1 4 1 2 3 3 5 3 2 5 3 2 1 3 3 5 5 5 2
#> [14149] 1 5 5 2 3 3 3 5 4 1 3 2 3 3 2 1 2 3 3 5 4 1 3 1 2 3 1 4 5 2 3 3 3 4 3 3
#> [14185] 2 3 3 5 4 4 2 5 4 1 2 3 3 1 1 2 3 2 3 3 5 3 4 3 3 2 5 5 5 5 4 2 2 1 3 3
#> [14221] 4 3 2 3 1 3 3 1 1 3 3 5 1 2 3 1 2 2 2 5 1 3 4 3 5 5 3 3 3 5 1 1 5 3 1 1
#> [14257] 4 3 5 2 5 3 3 3 5 3 2 5 3 3 2 5 3 5 5 3 3 4 2 3 3 2 3 2 2 5 1 2 1 2 3 3
#> [14293] 3 1 1 2 3 2 3 2 3 3 2 3 5 3 2 2 4 1 4 5 2 5 5 5 3 3 3 2 3 3 3 3 3 1 1 1
#> [14329] 3 5 3 3 3 3 3 2 3 3 3 2 3 1 4 3 2 1 3 2 5 3 5 2 3 1 1 3 5 3 2 3 5 5 1 1
#> [14365] 3 2 2 5 1 1 3 5 3 4 5 4 5 3 5 2 3 2 1 5 3 2 4 3 2 3 5 3 4 5 3 5 3 2 1 3
#> [14401] 4 3 2 5 3 5 1 3 4 3 3 3 1 3 4 5 1 1 4 1 2 2 1 1 4 3 5 1 1 3 3 3 4 3 4 3
#> [14437] 4 5 3 3 2 1 1 3 3 2 3 3 4 4 5 3 1 3 3 3 2 3 4 5 2 1 3 3 3 3 3 2 3 3 4 3
#> [14473] 3 1 3 3 2 5 3 3 3 3 3 2 3 3 1 3 2 3 3 1 4 3 1 4 5 3 2 1 4 3 5 3 5 1 3 2
#> [14509] 2 3 2 5 1 4 4 3 2 3 3 1 3 3 4 3 2 3 3 3 1 2 5 5 1 1 2 5 1 3 3 2 2 1 1 2
#> [14545] 3 4 2 1 3 1 3 5 3 1 3 3 3 1 2 3 3 3 1 4 3 2 3 3 3 5 2 1 3 3 3 3 1 3 3 3
#> [14581] 5 1 1 5 3 3 2 3 1 3 1 1 5 3 1 5 1 4 3 1 1 4 4 2 3 2 4 1 3 1 3 5 3 5 5 4
#> [14617] 4 2 1 5 3 5 5 1 1 3 3 1 3 3 3 1 1 3 3 3 5 2 3 5 4 5 3 5 5 3 4 3 4 1 3 5
#> [14653] 3 1 5 1 3 3 2 1 2 1 1 4 1 1 5 2 1 2 3 2 1 3 3 3 4 2 3 3 1 3 5 5 2 5 3 2
#> [14689] 1 4 1 3 4 3 1 1 1 2 3 2 3 5 5 5 1 2 5 1 1 1 4 3 2 1 5 3 3 2 1 1 3 5 3 5
#> [14725] 5 5 5 5 5 1 2 5 4 3 2 1 3 3 3 3 3 3 2 5 3 4 3 1 5 3 1 3 3 1 3 3 1 3 4 3
#> [14761] 4 1 1 1 1 3 1 3 3 4 1 3 2 5 5 3 3 2 3 3 3 5 5 1 4 3 3 3 3 1 4 4 5 3 5 3
#> [14797] 3 4 3 2 4 1 4 3 3 4 4 1 5 4 3 1 2 5 3 3 3 3 3 5 3 1 4 3 2 5 2 1 2 5 3 3
#> [14833] 3 3 3 3 4 2 3 2 3 1 3 3 1 1 2 5 2 5 3 3 2 4 1 3 1 1 5 1 2 3 2 1 3 3 1 3
#> [14869] 3 1 1 3 5 3 5 3 5 4 3 1 1 1 5 2 4 3 2 3 3 1 1 1 3 3 3 2 4 3 1 3 2 1 3 4
#> [14905] 1 4 3 5 3 5 5 5 2 5 5 1 5 3 5 4 1 1 3 4 5 3 3 5 1 3 1 5 3 2 5 2 1 3 5 3
#> [14941] 1 2 1 2 3 3 3 3 3 1 5 5 4 3 4 3 4 1 5 3 3 3 1 1 3 2 3 3 3 3 5 2 4 3 2 3
#> [14977] 3 2 4 3 5 4 1 4 3 4 3 5 3 3 2 3 4 4 3 4 3 3 2 3 3 4 3 3 4 3 1 1 2 3 3 3
#> [15013] 3 2 2 1 1 1 3 3 5 3 5 1 1 3 3 1 3 3 3 4 1 2 5 3 3 2 5 1 5 1 1 3 3 4 4 4
#> [15049] 2 3 5 3 1 3 2 4 4 3 5 1 3 3 2 3 4 3 1 2 4 3 1 1 4 4 2 3 1 2 3 1 3 3 1 5
#> [15085] 4 5 4 5 2 2 2 3 3 2 5 4 5 2 3 3 2 3 3 1 4 3 1 3 2 3 1 1 1 3 3 1 5 1 1 4
#> [15121] 2 3 4 3 5 2 3 1 3 2 3 1 2 5 1 3 3 1 1 1 1 2 3 3 3 2 3 1 3 3 3 3 2 4 5 3
#> [15157] 1 2 1 2 1 1 5 5 3 2 2 1 3 3 3 2 1 3 2 1 1 1 2 2 3 1 1 4 3 4 1 2 3 5 3 3
#> [15193] 3 5 3 3 1 3 5 4 3 3 1 3 1 3 3 4 3 5 2 3 3 2 4 3 5 3 3 5 3 2 1 3 5 3 3 5
#> [15229] 1 5 1 2 2 1 4 1 4 3 5 4 3 3 2 3 3 3 3 3 2 4 3 5 5 1 1 3 1 2 1 3 4 2 1 3
#> [15265] 2 3 3 5 3 2 1 1 3 5 3 2 1 3 2 3 3 1 3 1 3 3 1 4 3 4 5 4 1 4 3 3 4 5 4 1
#> [15301] 5 3 2 1 3 1 1 5 1 2 1 3 1 3 2 5 5 3 1 1 2 2 3 1 3 3 3 3 1 3 3 4 2 4 3 3
#> [15337] 3 1 3 1 4 2 2 2 4 3 2 3 3 2 2 4 3 3 5 1 3 4 5 1 1 2 1 3 5 4 2 3 5 4 3 5
#> [15373] 3 1 4 3 3 2 1 2 3 3 5 2 1 1 3 3 3 2 5 5 2 3 5 3 3 3 1 2 3 2 1 4 3 5 1 3
#> [15409] 2 1 2 1 3 3 2 4 3 4 3 5 1 1 5 3 1 3 1 5 3 1 5 1 3 3 1 1 5 3 2 1 4 5 3 3
#> [15445] 3 2 3 3 3 4 2 4 4 1 5 5 3 2 1 3 3 3 4 3 3 3 2 2 5 3 3 2 5 3 5 3 4 1 3 2
#> [15481] 3 3 2 3 2 5 4 5 4 3 5 2 2 1 4 5 4 4 3 5 3 1 3 3 2 1 3 3 2 1 3 3 1 2 5 5
#> [15517] 3 3 3 1 1 3 1 5 3 2 3 3 5 5 5 3 3 3 5 5 3 3 1 3 1 4 1 3 4 5 3 5 5 3 2 3
#> [15553] 3 5 1 5 3 5 3 2 2 4 3 3 3 3 3 1 3 3 3 3 3 3 3 1 3 1 1 1 3 1 1 3 5 1 3 1
#> [15589] 3 5 3 1 3 2 1 1 5 5 5 4 3 3 1 5 1 3 4 2 5 1 3 5 2 3 3 4 1 3 2 5 3 3 5 1
#> [15625] 2 3 3 3 3 2 3 3 1 3 4 1 3 1 3 3 3 1 1 5 3 2 1 1 4 3 1 5 3 1 3 1 1 4 5 3
#> [15661] 3 3 5 2 3 1 4 3 5 4 5 5 3 3 5 4 2 3 3 5 2 2 4 4 5 3 3 5 3 1 2 5 5 2 3 2
#> [15697] 1 2 5 3 3 1 3 2 3 3 3 5 1 3 3 3 4 1 3 4 1 1 4 2 3 3 4 1 1 3 5 5 4 3 3 2
#> [15733] 3 1 2 3 1 4 5 3 2 2 4 1 5 4 5 5 1 3 5 3 5 3 2 1 2 3 3 1 3 3 5 3 3 1 2 4
#> [15769] 1 5 1 3 3 3 1 1 3 1 1 1 1 1 5 3 1 5 5 4 5 5 3 4 5 3 1 3 3 5 3 4 3 3 2 4
#> [15805] 2 1 1 3 5 1 5 4 2 4 1 1 1 3 1 3 3 1 2 3 3 2 5 3 3 2 3 4 5 1 1 1 5 3 5 3
#> [15841] 1 1 4 2 5 1 3 4 1 3 2 4 5 1 3 3 3 4 3 3 5 1 3 2 3 5 2 1 5 3 5 1 3 3 1 1
#> [15877] 3 5 4 1 4 2 5 3 1 3 4 3 4 3 1 3 2 4 1 3 1 2 4 2 5 3 3 4 1 4 1 3 3 3 4 3
#> [15913] 3 3 3 5 4 3 1 2 3 1 2 2 3 1 3 4 3 2 2 1 5 5 3 4 3 5 5 5 2 3 3 1 1 3 1 2
#> [15949] 2 2 5 2 2 3 4 3 3 3 3 5 3 3 3 1 3 1 2 2 3 3 2 3 3 1 1 1 1 5 1 3 1 5 5 5
#> [15985] 4 2 1 5 5 5 1 3 3 3 2 5 1 1 5 4 1 3 4 2 2 1 5 4 5 3 4 2 3 2 3 3 4 3 5 4
#> [16021] 3 4 3 3 3 3 2 3 2 1 2 3 5 5 3 1 3 3 2 3 1 5 1 3 1 3 3 3 5 1 1 3 3 2 3 3
#> [16057] 3 5 3 3 2 5 5 3 1 1 3 2 3 2 4 4 5 3 1 4 3 3 3 4 3 1 2 1 4 5 3 5 1 3 2 2
#> [16093] 3 4 1 5 3 1 3 1 3 1 5 5 3 3 2 2 3 2 5 3 2 3 3 5 1 3 5 3 5 3 2 5 3 1 5 2
#> [16129] 1 3 3 3 4 4 4 3 3 3 5 1 5 1 3 5 3 5 2 3 3 1 1 3 1 3 3 2 1 4 4 5 5 4 4 5
#> [16165] 5 3 2 2 3 2 2 3 1 5 4 1 3 3 5 2 3 3 4 5 4 1 3 2 3 1 3 3 5 1 5 3 5 5 3 3
#> [16201] 3 1 3 3 1 3 2 5 3 5 1 3 2 1 1 3 3 3 3 1 3 3 5 5 1 1 3 3 3 3 2 3 2 3 1 2
#> [16237] 3 3 1 2 3 2 1 1 3 1 2 1 3 3 5 3 3 4 1 2 1 3 3 3 3 4 1 3 1 3 3 4 3 3 2 2
#> [16273] 1 1 4 5 3 5 2 4 1 3 1 2 3 1 3 3 3 1 2 5 3 1 4 1 1 2 5 3 3 5 1 3 2 2 5 3
#> [16309] 3 5 3 3 1 1 5 3 5 2 1 2 3 3 5 2 2 5 3 2 3 3 3 3 1 1 3 3 1 3 4 2 5 3 5 3
#> [16345] 3 3 5 4 3 1 1 3 5 2 3 1 4 3 1 3 3 3 3 1 1 2 3 5 3 3 2 5 3 1 1 3 3 3 1 4
#> [16381] 3 2 3 2 3 5 2 5 3 1 3 1 3 2 1 1 4 2 1 4 2 4 2 3 3 3 3 1 2 5 3 1 4 3 1 3
#> [16417] 1 4 3 1 3 3 1 5 5 3 2 3 3 1 2 3 3 3 5 2 5 5 4 5 5 1 1 3 5 2 2 2 1 5 1 2
#> [16453] 3 5 2 3 1 3 1 4 1 4 5 1 5 1 3 3 1 1 5 5 2 3 3 4 3 5 3 4 2 3 5 1 4 2 2 4
#> [16489] 1 4 3 2 3 1 3 3 3 5 3 3 3 5 1 1 4 1 3 5 1 1 5 5 5 3 2 3 5 4 3 3 5 3 3 3
#> [16525] 3 3 1 5 5 1 2 1 2 4 2 5 3 5 4 1 2 4 4 5 4 3 5 5 4 1 1 1 3 1 3 1 4 1 5 3
#> [16561] 1 1 3 3 5 1 1 3 3 1 1 3 2 4 4 2 5 1 5 3 2 3 3 2 2 3 3 2 3 4 1 4 3 1 3 3
#> [16597] 1 1 3 3 2 2 2 2 5 5 5 4 3 3 3 5 3 5 3 1 3 5 3 3 1 4 4 2 1 3 5 5 1 3 1 3
#> [16633] 3 4 3 1 3 3 3 3 3 5 3 1 2 3 3 4 3 3 4 1 3 2 1 5 3 3 1 4 2 3 5 3 3 4 4 3
#> [16669] 1 2 4 3 5 2 2 1 2 1 1 2 5 3 3 1 3 4 4 1 3 3 3 3 3 1 1 3 5 1 1 3 1 1 2 4
#> [16705] 3 5 2 2 4 3 2 3 3 1 3 3 2 1 3 3 2 1 1 1 5 4 3 1 3 5 3 1 4 3 3 3 3 3 4 2
#> [16741] 1 3 1 3 3 3 3 3 5 1 3 1 5 4 2 1 4 3 5 5 4 5 4 4 1 4 3 1 3 3 2 3 1 1 2 5
#> [16777] 3 5 5 1 1 5 1 5 1 3 3 3 5 4 2 4 2 2 3 1 3 1 5 5 3 3 3 3 2 3 3 1 2 2 3 3
#> [16813] 4 1 3 4 3 4 1 3 1 3 4 1 2 3 2 2 3 3 5 1 3 2 3 1 5 3 3 2 2 4 3 1 3 1 2 3
#> [16849] 3 2 3 3 1 2 2 3 2 5 3 3 3 4 3 1 1 3 1 3 5 1 2 2 1 5 2 1 4 3 1 4 3 5 2 3
#> [16885] 1 3 2 1 1 5 3 4 2 3 2 4 1 3 3 2 3 5 3 3 3 1 1 3 2 5 2 2 5 3 3 2 4 3 3 3
#> [16921] 2 3 1 3 2 4 5 2 2 3 3 3 3 1 3 1 4 1 5 3 3 3 3 1 3 2 3 5 1 1 3 4 1 2 1 1
#> [16957] 1 3 1 3 2 2 1 3 5 3 3 3 1 5 1 3 3 1 3 1 1 5 2 2 3 4 3 2 1 3 3 3 4 4 3 3
#> [16993] 3 5 4 2 1 5 3 5 3 3 1 3 5 2 3 3 5 3 3 3 1 2 3 3 3 2 2 3 3 4 1 4 2 3 3 2
#> [17029] 1 1 3 2 2 1 2 4 3 3 2 5 3 3 4 5 3 2 1 3 4 3 3 1 5 3 2 5 4 3 3 3 3 1 3 5
#> [17065] 2 3 2 5 2 5 3 2 4 3 5 3 5 4 5 3 3 1 5 3 4 3 3 1 4 4 3 5 3 2 1 1 3 3 5 2
#> [17101] 3 3 3 1 4 2 3 5 3 3 2 5 2 2 5 1 2 3 1 3 2 4 3 1 4 5 3 1 3 3 1 4 4 3 5 2
#> [17137] 3 5 5 3 3 3 3 4 1 3 2 2 5 3 5 4 3 3 1 3 5 3 5 3 3 1 3 1 4 1 3 2 1 3 2 5
#> [17173] 3 2 2 2 2 5 3 1 1 3 4 5 3 3 3 2 2 5 2 2 5 3 1 3 3 3 3 1 2 1 3 2 2 4 2 4
#> [17209] 1 5 3 5 3 3 1 3 5 5 3 1 4 3 3 5 1 1 5 5 2 3 1 4 4 3 1 4 1 1 1 2 4 2 1 5
#> [17245] 5 4 2 3 3 5 4 1 3 4 5 4 3 2 3 3 2 3 1 3 3 1 5 4 3 2 5 4 1 3 1 5 3 3 5 3
#> [17281] 3 3 2 2 3 4 4 1 3 1 5 3 2 2 1 5 3 3 5 2 3 3 1 5 3 3 1 5 3 5 4 1 3 2 3 3
#> [17317] 5 3 3 4 1 4 1 3 5 3 5 1 5 3 2 3 4 5 3 1 2 1 3 3 3 1 5 3 1 1 2 3 5 3 1 2
#> [17353] 5 2 3 3 5 1 5 3 1 3 3 3 3 5 5 3 3 3 1 3 3 5 3 2 3 4 3 3 3 4 3 2 4 3 3 1
#> [17389] 5 3 3 1 5 4 4 1 5 5 3 3 4 2 3 3 2 5 3 3 2 1 3 2 3 3 3 5 3 5 2 3 3 3 3 3
#> [17425] 5 4 5 5 3 1 1 5 3 3 3 2 4 3 5 3 3 2 5 5 3 3 2 3 1 3 3 3 1 3 3 3 3 3 2 1
#> [17461] 1 1 1 2 4 1 1 4 3 1 3 5 4 1 3 1 2 3 1 5 3 3 5 3 3 4 4 3 5 3 1 3 2 1 2 3
#> [17497] 3 3 3 1 3 3 5 2 2 4 3 5 3 1 5 1 5 1 4 5 5 1 3 1 3 1 5 1 3 1 5 5 2 3 1 1
#> [17533] 3 1 3 5 4 3 5 2 3 4 2 5 1 4 1 2 1 3 5 3 2 3 4 2 1 3 5 5 5 1 2 3 1 1 1 1
#> [17569] 3 1 3 1 3 2 3 4 4 1 1 3 3 5 4 3 2 3 1 3 2 2 4 4 1 3 2 4 3 3 3 1 1 1 5 3
#> [17605] 4 1 3 3 3 2 4 5 1 1 1 4 3 2 4 4 3 1 5 2 1 3 3 1 5 5 2 2 3 4 1 2 3 3 3 1
#> [17641] 4 4 4 1 3 2 2 3 1 5 5 3 3 5 3 3 5 4 3 5 3 5 5 1 4 1 4 5 5 3 1 3 1 5 4 1
#> [17677] 1 3 2 5 3 3 1 5 5 1 4 5 1 2 5 3 5 3 3 4 1 1 1 1 1 1 5 3 5 3 3 5 5 4 3 3
#> [17713] 2 3 3 1 4 2 5 3 2 1 1 3 3 3 3 2 3 2 3 1 3 4 1 3 2 1 1 1 5 4 3 1 3 1 5 3
#> [17749] 2 5 3 1 3 1 1 2 3 3 4 3 4 3 3 1 3 1 1 2 1 5 4 5 1 3 4 4 1 5 5 3 3 1 4 1
#> [17785] 5 3 5 2 2 4 3 3 2 1 1 2 1 3 3 3 3 5 3 1 3 3 5 3 3 4 3 2 2 2 3 1 4 3 2 2
#> [17821] 4 1 3 1 2 3 3 3 3 3 2 5 3 1 5 4 1 3 4 5 2 2 5 2 3 3 3 4 1 3 2 1 5 1 1 4
#> [17857] 1 1 5 1 5 3 3 3 3 5 3 2 5 3 1 3 2 3 3 1 5 1 5 3 3 2 5 5 1 3 3 3 3 3 4 1
#> [17893] 1 1 4 3 3 5 1 3 1 3 3 1 1 5 4 4 4 2 2 1 3 1 3 1 2 4 4 5 5 1 3 2 5 2 2 1
#> [17929] 3 3 4 5 5 3 5 3 1 3 3 2 3 3 1 3 1 2 5 5 2 5 2 3 3 3 3 3 3 5 3 1 3 3 3 1
#> [17965] 3 3 5 1 4 1 1 4 3 4 2 3 5 2 3 3 5 4 5 2 5 3 2 1 1 3 1 4 4 1 1 2 4 1 3 1
#> [18001] 3 5 2 3 1 4 1 3 2 1 4 1 1 2 5 1 5 1 5 3 2 2 1 3 3 2 3 4 4 4 2 5 5 5 3 5
#> [18037] 2 5 3 3 3 5 4 2 1 3 3 2 4 3 3 3 2 3 5 2 3 3 4 1 2 5 4 3 2 4 3 5 1 2 1 1
#> [18073] 3 3 3 3 1 2 4 5 5 4 2 3 5 3 1 1 5 1 3 3 2 1 3 5 3 1 4 3 4 4 3 5 3 3 1 2
#> [18109] 5 5 1 3 3 5 3 1 3 3 4 1 3 3 5 2 5 2 5 3 3 4 3 2 5 5 1 3 1 2 2 5 3 3 1 1
#> [18145] 3 2 4 3 4 3 1 5 1 4 5 3 3 4 2 5 4 5 4 5 1 1 5 2 1 5 1 4 1 2 5 4 3 3 2 1
#> [18181] 2 1 3 5 1 1 3 5 5 3 3 2 3 3 3 1 1 1 5 3 5 1 3 3 3 5 3 2 5 5 1 2 5 1 3 4
#> [18217] 3 5 3 3 1 1 3 5 3 1 1 5 4 3 1 5 1 5 1 4 3 3 5 1 1 1 3 3 1 5 3 3 3 3 5 1
#> [18253] 2 1 3 3 1 1 2 1 3 3 3 4 5 3 4 1 4 3 4 3 2 3 1 5 3 5 1 1 3 3 3 5 1 5 3 4
#> [18289] 3 2 3 4 3 5 2 2 2 2 1 5 4 1 3 3 5 3 5 3 1 3 5 3 1 1 1 3 3 3 3 3 4 4 3 3
#> [18325] 3 2 3 1 5 5 1 5 3 2 5 3 3 3 3 3 3 1 2 4 3 4 5 3 3 2 4 2 3 1 1 1 3 3 3 3
#> [18361] 1 2 3 1 5 3 2 3 1 2 1 1 3 1 3 3 3 4 1 5 2 2 1 5 2 3 3 1 1 3 3 5 2 1 1 1
#> [18397] 1 1 2 2 3 3 4 1 3 1 2 1 3 1 3 3 3 5 3 3 3 3 2 3 5 5 3 3 2 1 3 3 3 5 4 3
#> [18433] 1 1 1 3 3 4 3 3 4 3 3 1 2 1 4 1 4 5 2 3 2 2 5 2 3 3 4 5 3 3 3 4 3 4 3 3
#> [18469] 3 2 4 2 5 1 1 5 2 4 3 1 5 2 5 3 4 3 4 1 5 3 1 1 3 1 5 3 1 3 3 2 3 3 2 3
#> [18505] 1 3 5 3 5 1 1 3 2 3 2 2 4 5 3 1 3 5 3 3 1 1 4 2 3 4 1 3 1 3 4 1 4 2 3 3
#> [18541] 3 1 3 1 3 5 3 3 5 4 2 1 3 3 3 2 1 1 3 5 1 5 3 3 4 3 5 1 2 1 4 2 3 3 2 3
#> [18577] 3 2 3 1 2 3 3 2 3 5 1 4 5 3 4 3 3 1 1 3 3 3 3 3 2 5 3 2 2 3 5 5 3 2 3 5
#> [18613] 3 1 5 2 1 3 1 1 2 3 3 3 5 3 2 2 5 1 2 3 5 3 3 4 1 1 4 3 1 1 1 2 3 3 5 3
#> [18649] 4 1 3 1 5 1 4 5 4 3 3 5 3 5 2 3 1 2 2 3 1 5 2 2 3 5 5 5 3 3 5 1 3 2 1 2
#> [18685] 2 1 2 1 3 2 5 3 2 3 3 5 1 1 3 3 3 4 1 4 4 1 1 1 3 5 5 2 4 1 2 3 3 3 1 2
#> [18721] 5 4 3 1 4 3 5 1 5 1 4 5 2 3 5 3 3 5 4 3 3 1 1 3 5 3 5 5 3 2 5 1 3 3 2 3
#> [18757] 3 2 3 3 2 2 1 4 4 2 3 3 4 5 5 5 1 3 3 5 3 3 3 3 3 4 4 4 3 1 4 4 2 4 3 1
#> [18793] 5 2 3 1 3 1 3 1 3 4 3 2 3 3 2 3 3 5 5 4 4 3 3 4 3 4 5 1 5 4 2 3 1 2 3 1
#> [18829] 2 3 3 4 2 3 3 4 2 2 5 5 5 1 4 1 1 1 3 1 3 3 1 1 3 4 3 1 5 1 4 3 1 5 5 1
#> [18865] 5 1 2 5 1 5 5 2 4 1 5 5 5 3 4 1 3 5 3 4 4 1 5 5 3 1 3 3 3 3 3 5 3 3 5 3
#> [18901] 5 4 2 4 4 5 4 2 4 3 3 3 1 3 4 5 1 3 3 3 3 1 4 3 5 4 1 2 3 5 4 5 5 5 3 5
#> [18937] 3 2 4 5 3 3 1 2 1 1 3 4 2 3 1 3 1 3 1 5 2 5 4 5 3 3 1 5 5 5 3 2 4 3 5 2
#> [18973] 1 2 4 1 1 1 5 3 2 5 4 2 1 1 4 3 5 3 1 5 2 1 1 3 3 1 3 1 5 1 3 3 3 2 4 5
#> [19009] 5 1 3 3 4 3 2 5 3 2 1 1 4 1 3 2 1 3 5 5 5 3 1 3 3 1 3 1 1 3 3 3 1 2 3 3
#> [19045] 4 5 3 3 1 3 5 5 1 4 5 3 3 3 2 3 3 1 4 4 1 5 5 5 3 5 3 1 1 2 1 5 2 3 5 1
#> [19081] 5 3 1 2 5 3 5 3 5 5 3 1 4 2 2 5 2 3 2 3 3 1 3 4 1 3 1 5 2 4 3 3 3 3 5 4
#> [19117] 1 2 3 4 2 3 4 5 5 5 1 3 3 5 3 5 2 3 3 4 5 3 1 5 3 3 5 1 2 3 5 3 5 1 4 1
#> [19153] 1 4 3 4 4 3 1 1 3 5 1 3 5 3 5 1 5 3 3 3 3 5 3 1 4 1 3 3 5 1 1 5 4 4 4 4
#> [19189] 1 5 3 1 4 5 1 3 3 1 2 4 3 3 5 5 3 1 3 5 5 3 1 1 3 5 3 5 3 3 5 5 3 3 3 5
#> [19225] 3 2 2 2 3 1 3 1 3 5 4 2 1 3 1 1 5 2 2 3 4 1 2 1 3 3 3 1 4 2 1 3 3 3 1 3
#> [19261] 5 3 2 5 3 5 1 3 3 2 2 3 3 5 4 3 4 5 2 4 5 3 3 3 2 2 3 1 1 2 3 3 5 5 5 3
#> [19297] 3 3 2 1 2 3 4 5 4 5 3 3 3 1 3 3 3 1 5 3 3 3 4 2 5 3 4 3 5 3 1 1 2 5 3 3
#> [19333] 4 2 1 1 1 4 1 1 1 5 5 3 1 3 2 2 3 5 2 5 5 5 3 3 2 2 3 4 4 3 4 3 1 2 2 2
#> [19369] 3 1 3 3 4 5 2 5 3 3 3 1 2 3 5 3 3 3 5 3 2 5 4 3 3 2 3 2 1 2 3 1 5 4 3 3
#> [19405] 3 3 1 2 5 1 2 4 2 4 4 2 1 3 3 3 3 3 5 5 3 3 3 1 1 3 2 3 3 1 3 3 2 5 3 1
#> [19441] 3 2 3 3 3 1 3 3 1 2 3 2 3 5 1 1 3 3 5 2 5 2 5 1 3 2 3 4 1 5 1 3 2 2 3 3
#> [19477] 2 2 3 1 3 4 3 5 5 5 3 1 3 5 2 3 1 4 1 3 3 2 5 3 1 4 5 1 1 4 2 1 1 1 3 3
#> [19513] 1 4 1 1 1 3 1 3 2 3 3 3 3 5 4 4 5 3 5 3 3 1 3 3 1 4 3 1 1 3 3 5 4 2 2 4
#> [19549] 2 4 3 3 3 4 3 4 3 5 5 5 4 2 1 4 2 2 5 4 3 5 3 3 2 3 5 1 3 3 1 5 3 4 1 1
#> [19585] 2 3 2 3 1 1 3 3 1 5 1 1 3 2 3 4 1 4 3 3 3 3 3 3 3 3 3 1 5 1 3 1 3 3 3 5
#> [19621] 3 3 5 5 3 3 1 3 1 1 1 3 3 2 2 1 1 1 1 5 2 3 3 5 3 2 2 1 1 5 3 1 3 4 3 4
#> [19657] 3 3 1 2 1 2 1 5 3 1 2 2 1 3 3 4 3 5 3 3 3 4 1 1 3 3 3 3 5 3 3 3 3 2 4 1
#> [19693] 3 1 3 1 4 3 3 3 1 3 5 3 1 1 3 5 1 3 3 5 2 3 3 2 3 1 2 2 2 2 3 1 3 5 3 1
#> [19729] 2 5 3 1 4 2 1 2 4 2 5 5 3 3 4 3 3 3 1 3 1 5 1 4 5 1 3 1 2 4 5 2 3 3 3 1
#> [19765] 4 2 3 1 2 5 4 1 2 2 1 3 3 3 3 4 1 3 4 4 4 2 3 3 2 3 3 2 3 1 1 2 4 1 1 5
#> [19801] 2 1 3 3 1 3 3 5 5 3 1 1 3 5 4 3 3 2 1 1 5 1 1 5 5 2 1 3 1 3 5 3 3 4 1 3
#> [19837] 5 1 3 3 2 3 5 3 3 5 2 3 3 3 5 1 5 1 4 5 5 3 1 5 3 1 1 3 1 3 3 3 3 3 1 4
#> [19873] 5 2 4 4 2 1 3 3 3 4 3 2 3 1 3 4 3 3 4 5 3 2 1 1 5 1 1 3 5 2 5 1 1 1 1 3
#> [19909] 3 3 2 1 2 5 5 5 3 5 2 1 4 3 3 4 4 5 5 3 3 3 4 3 5 1 5 3 3 2 3 4 5 1 3 1
#> [19945] 3 1 4 3 1 2 2 3 2 1 3 2 1 2 2 3 3 3 1 2 5 1 3 1 5 3 1 5 3 5 3 3 2 5 1 3
#> [19981] 4 5 3 4 2 3 2 3 1 5 4 2 3 3 4 5 2 3 1 3 2 3 5 4 4 1 4 3 5 1 3 3 5 2 4 5
#> [20017] 2 2 1 3 1 5 1 5 3 5 3 3 1 1 3 3 2 1 5 2 5 3 4 4 1 4 3 3 3 5 3 3 4 1 3 3
#> [20053] 4 4 5 3 1 3 3 3 4 4 5 2 2 4 3 1 3 5 5 3 3 2 3 3 3 1 3 4 5 3 5 1 1 3 2 4
#> [20089] 5 2 3 4 1 3 1 3 2 3 4 3 4 2 2 2 4 2 1 5 3 3 5 5 2 3 2 1 3 3 2 3 3 1 4 1
#> [20125] 4 1 5 1 3 3 3 1 1 5 1 4 4 1 5 5 1 1 3 3 3 5 5 4 3 3 1 3 3 3 5 5 3 2 3 1
#> [20161] 4 3 5 1 5 5 1 3 3 3 3 4 3 1 1 3 3 3 3 4 1 5 3 3 1 3 3 5 3 2 1 3 3 1 1 4
#> [20197] 3 5 4 5 4 5 4 3 3 3 3 3 5 1 3 3 3 4 5 3 1 5 1 1 2 5 1 2 2 5 5 4 3 3 2 3
#> [20233] 3 1 4 5 1 3 4 3 3 3 1 3 5 4 3 3 4 5 5 4 3 2 1 5 1 4 3 1 4 3 1 4 3 3 3 3
#> [20269] 3 3 1 5 5 1 1 3 4 2 3 3 2 2 4 5 2 3 4 1 5 2 3 3 3 1 5 3 2 2 1 5 3 4 3 3
#> [20305] 3 3 5 1 5 2 2 5 3 4 2 4 1 5 4 5 3 3 3 3 3 2 3 5 1 3 3 4 1 3 2 1 3 3 4 3
#> [20341] 3 1 3 3 4 3 3 4 3 2 4 3 3 3 5 5 3 1 5 1 3 5 3 1 3 1 3 3 4 4 1 4 1 2 1 5
#> [20377] 3 3 3 4 3 4 3 3 5 3 3 5 3 1 4 5 1 4 5 5 2 5 3 2 3 3 2 3 3 2 2 3 1 1 5 3
#> [20413] 1 3 4 1 3 5 2 3 2 2 4 2 3 3 5 1 4 3 4 5 3 3 4 5 3 5 2 3 1 4 3 3 5 2 3 5
#> [20449] 5 3 2 4 2 5 3 4 4 1 4 3 5 4 1 4 3 2 2 3 2 3 2 1 1 2 3 3 3 2 4 5 1 2 2 3
#> [20485] 2 1 3 5 3 1 5 1 2 3 1 5 3 1 5 5 2 2 1 4 3 4 1 2 3 3 3 3 3 3 4 3 5 3 5 3
#> [20521] 3 3 3 1 5 1 3 4 4 2 2 1 4 2 1 1 4 4 1 3 3 5 4 3 1 1 2 5 5 5 2 1 3 5 5 5
#> [20557] 3 3 4 5 3 1 1 5 1 3 4 3 2 1 5 5 1 4 2 5 2 3 5 2 3 5 4 3 5 1 2 3 4 3 4 2
#> [20593] 1 2 2 5 2 1 3 2 1 3 5 3 4 2 3 5 2 1 1 1 3 2 5 3 4 2 2 5 1 5 4 5 1 3 2 3
#> [20629] 2 5 3 5 3 1 2 3 4 3 2 1 2 3 3 3 3 4 2 1 3 4 3 1 1 3 1 4 2 4 3 1 2 2 3 3
#> [20665] 2 3 5 5 4 2 3 3 3 2 4 3 4 2 3 4 3 5 2 3 2 3 3 3 4 3 3 2 5 4 1 3 2 1 4 3
#> [20701] 3 3 5 1 5 3 3 5 3 3 3 3 1 3 3 5 1 3 2 5 1 1 1 1 3 1 3 1 4 1 3 2 5 4 1 3
#> [20737] 1 2 1 3 3 4 3 1 3 3 5 5 4 1 2 1 5 5 3 3 1 5 3 3 3 3 1 2 5 3 1 5 3 2 2 5
#> [20773] 3 3 3 1 2 1 5 4 4 5 1 1 2 3 2 5 3 2 4 2 3 3 2 5 4 3 5 5 1 1 5 3 2 4 5 1
#> [20809] 1 2 2 4 1 3 3 5 5 3 5 1 4 3 4 3 3 4 3 5 1 4 3 1 2 5 2 1 5 3 4 3 3 5 4 5
#> [20845] 3 2 3 2 4 5 3 1 1 3 5 1 5 1 5 3 5 1 1 3 3 4 3 3 3 3 3 3 1 5 3 5 4 5 3 2
#> [20881] 3 3 3 3 3 3 5 1 1 1 2 3 2 3 2 5 3 4 1 4 3 3 1 5 3 2 4 4 2 3 1 3 4 5 1 3
#> [20917] 3 4 1 4 3 3 3 1 1 4 5 5 2 3 5 4 3 5 3 2 1 3 1 3 2 5 2 3 1 2 3 1 1 4 2 3
#> [20953] 3 3 2 3 4 3 5 1 5 1 3 3 2 2 3 2 1 1 3 5 2 4 5 5 1 1 1 5 5 4 1 1 3 3 5 2
#> [20989] 3 3 5 3 3 5 3 5 1 3 1 3 1 2 3 1 1 3 3 3 5 4 5 5 3 1 3 1 2 4 2 3 4 4 1 1
#> [21025] 2 3 5 1 3 3 4 5 1 2 2 3 2 5 2 3 3 4 2 3 5 2 3 4 2 4 5 3 2 3 3 3 3 2 2 5
#> [21061] 2 3 4 2 1 3 4 1 3 3 1 1 1 4 1 2 1 3 3 1 1 2 3 5 2 3 3 3 4 5 2 2 4 4 2 4
#> [21097] 2 3 1 2 1 2 5 5 4 2 1 4 3 3 3 4 4 3 3 1 3 1 3 4 2 2 5 3 3 4 3 1 3 5 2 1
#> [21133] 2 3 3 5 1 3 3 3 1 3 2 4 1 1 4 1 4 2 3 1 2 1 5 2 2 2 1 4 1 2 1 2 3 4 4 3
#> [21169] 3 3 5 1 3 3 3 4 5 5 3 3 5 3 1 3 4 3 3 2 3 3 1 3 3 3 3 3 3 5 5 3 4 3 2 5
#> [21205] 3 3 4 4 5 5 3 5 2 2 1 3 2 3 2 1 3 1 1 4 1 4 5 3 3 1 3 1 5 3 4 3 1 3 3 5
#> [21241] 3 3 4 2 3 2 1 3 1 3 4 1 4 1 3 2 2 3 4 4 4 2 4 1 2 1 1 3 2 5 1 5 3 1 3 5
#> [21277] 4 1 1 5 2 3 1 1 5 3 5 3 3 3 1 1 2 2 1 2 5 5 2 3 3 5 3 1 1 3 1 3 5 4 5 5
#> [21313] 3 3 1 4 2 3 5 4 3 1 4 1 3 4 5 3 3 1 2 1 3 3 1 5 3 1 1 3 3 5 4 1 4 1 1 3
#> [21349] 3 3 2 3 4 1 3 3 3 3 4 5 1 2 2 3 1 5 3 3 3 4 3 3 5 1 1 3 3 3 1 3 5 3 3 4
#> [21385] 3 5 4 2 3 3 3 2 3 4 4 5 3 2 3 4 3 1 2 3 2 4 1 5 5 1 4 3 4 3 1 3 3 3 5 3
#> [21421] 3 4 3 1 5 1 3 3 3 3 4 1 3 1 3 3 5 3 1 3 2 3 3 1 3 3 3 5 3 3 3 3 4 5 4 1
#> [21457] 2 4 3 2 5 3 1 4 5 3 2 2 3 1 2 5 1 4 4 4 1 2 4 2 1 4 2 2 3 5 5 3 4 2 4 4
#> [21493] 2 2 3 4 4 5 1 5 3 2 3 3 3 3 4 3 3 1 1 5 2 5 5 1 1 3 1 3 5 3 2 4 5 2 3 1
#> [21529] 2 2 5 1 2 1 2 4 5 5 4 4 4 3 1 3 4 4 3 3 3 3 5 1 1 2 2 3 3 5 3 5 5 1 3 4
#> [21565] 5 3 5 3 5 3 5 5 1 5 4 4 1 2 1 3 2 4 3 1 3 4 4 2 4 3 3 1 3 3 3 2 3 3 5 5
#> [21601] 1 3 4 1 4 1 2 1 3 3 5 1 2 3 5 1 3 3 5 3 3 4 3 3 1 5 4 1 2 1 3 4 5 5 1 1
#> [21637] 1 1 3 3 3 4 3 2 3 1 3 1 2 4 1 3 3 1 3 1 1 3 1 2 1 1 1 1 3 3 5 3 1 1 1 4
#> [21673] 3 1 2 5 1 5 3 1 2 3 5 4 3 3 3 3 3 4 4 3 3 2 2 1 2 3 1 1 3 5 5 5 2 3 5 3
#> [21709] 2 3 4 5 1 3 1 3 1 3 3 3 5 1 2 2 3 2 3 1 1 2 5 2 4 3 3 4 3 3 4 3 3 3 3 3
#> [21745] 1 5 1 2 1 3 3 1 1 4 3 4 2 2 1 3 3 2 3 3 3 2 3 4 2 3 5 4 3 3 3 1 5 5 3 1
#> [21781] 3 2 1 3 5 3 1 3 2 3 3 4 3 4 1 1 1 3 1 2 4 5 2 5 1 2 4 3 1 2 5 5 1 5 5 3
#> [21817] 3 2 3 4 1 3 3 2 3 3 3 5 5 3 2 1 5 5 1 3 4 3 3 3 1 3 3 5 1 3 3 5 2 5 4 2
#> [21853] 2 1 3 3 2 4 4 5 5 2 5 2 5 3 3 2 1 3 3 3 3 4 1 5 4 5 3 4 3 2 4 2 5 3 4 3
#> [21889] 3 3 5 4 2 2 3 2 3 5 5 5 2 4 5 3 5 3 5 2 5 5 1 3 3 5 1 3 2 2 5 1 5 3 3 1
#> [21925] 1 3 5 5 1 3 4 3 1 4 3 1 3 5 1 2 1 3 1 3 4 3 5 3 4 4 1 1 3 3 4 1 3 2 3 3
#> [21961] 3 1 5 3 2 1 1 2 3 3 2 5 5 2 3 4 1 2 3 4 1 3 4 2 3 3 3 1 5 5 3 3 5 1 1 3
#> [21997] 2 3 5 3 3 3 2 5 3 2 2 2 4 5 1 2 3 3 3 1 4 3 5 4 1 3 1 4 1 5 4 3 5 3 4 2
#> [22033] 1 3 5 2 3 3 2 1 2 1 3 2 4 5 3 5 1 3 1 2 4 2 2 3 1 3 4 3 5 2 2 1 3 4 2 4
#> [22069] 5 2 3 3 5 4 3 4 3 1 4 2 5 4 3 2 1 3 4 2 5 2 1 2 3 1 4 5 3 3 3 2 3 1 1 1
#> [22105] 4 5 1 5 1 5 4 2 5 4 5 2 3 1 3 5 4 4 5 2 4 3 1 3 3 4 1 4 3 2 4 4 3 3 4 3
#> [22141] 3 3 5 4 2 1 3 5 3 3 5 5 2 3 3 5 2 2 1 1 2 2 3 5 3 3 4 4 2 4 5 2 4 3 1 2
#> [22177] 1 3 5 2 4 2 3 5 1 3 2 4 4 1 1 1 1 3 5 1 3 4 2 5 3 5 3 5 5 5 2 5 1 3 5 3
#> [22213] 3 2 3 5 5 2 2 3 1 3 3 4 3 2 3 5 3 3 3 3 3 5 5 2 1 3 3 4 5 2 3 1 3 5 5 3
#> [22249] 1 1 1 5 3 1 2 3 2 3 3 3 5 5 3 5 5 5 2 3 3 5 1 3 5 1 2 4 2 1 5 1 3 2 3 1
#> [22285] 3 5 3 3 4 1 1 3 4 1 3 4 2 3 3 2 3 3 3 3 5 4 3 1 1 3 1 2 3 5 5 2 2 3 5 1
#> [22321] 2 3 4 3 3 3 2 1 3 2 3 5 5 4 4 3 3 3 3 5 3 5 3 3 3 3 3 4 3 5 3 2 4 1 4 2
#> [22357] 5 5 1 2 5 2 1 4 1 3 2 5 2 5 5 5 5 4 1 5 4 2 3 3 3 3 1 4 1 1 1 2 3 5 3 2
#> [22393] 1 3 1 1 5 3 3 3 3 2 3 2 1 3 2 1 1 1 3 5 1 2 3 5 5 1 3 3 2 5 1 5 3 3 3 3
#> [22429] 1 4 3 5 5 5 3 2 3 2 1 3 3 3 2 1 3 4 3 4 2 1 2 4 1 5 3 1 3 5 2 3 3 1 2 3
#> [22465] 1 4 4 1 5 1 3 1 3 3 4 4 3 3 3 4 3 4 2 1 1 1 3 2 5 5 1 3 3 3 3 3 1 5 4 3
#> [22501] 3 3 1 3 3 5 5 5 1 5 3 2 1 4 3 4 1 3 1 1 2 5 5 4 5 4 4 5 5 3 3 5 4 2 1 5
#> [22537] 5 3 3 3 3 2 1 3 4 1 4 3 4 3 3 1 3 2 5 3 3 3 3 5 3 5 2 5 5 5 1 1 1 3 5 2
#> [22573] 1 1 1 3 3 3 1 3 3 4 5 5 1 1 1 1 3 3 4 4 3 1 3 4 3 1 5 3 1 1 1 2 3 3 3 3
#> [22609] 4 3 3 4 3 3 1 2 4 2 1 5 5 5 5 2 3 1 1 2 1 3 3 3 3 1 3 3 4 3 3 3 3 5 4 3
#> [22645] 1 3 3 3 4 3 1 1 4 4 5 5 1 3 3 3 3 1 1 3 3 1 5 1 1 3 3 4 3 1 1 3 4 2 1 2
#> [22681] 1 3 1 3 1 1 4 5 2 5 3 5 3 1 1 5 3 5 1 3 3 3 1 5 3 3 1 5 3 3 1 1 1 4 3 3
#> [22717] 3 3 3 1 3 3 4 3 3 4 3 5 3 5 3 5 5 3 5 2 3 3 1 1 3 3 5 1 3 2 2 3 4 2 3 2
#> [22753] 5 4 1 3 3 3 1 3 2 3 2 3 3 2 3 3 5 3 1 1 1 2 3 1 3 5 2 2 3 3 2 5 3 5 1 5
#> [22789] 2 3 5 1 1 1 5 3 4 5 3 5 1 1 4 2 3 5 3 4 3 4 1 3 1 3 4 5 1 3 2 4 2 5 3 3
#> [22825] 2 1 1 3 1 1 3 4 5 1 5 2 3 3 5 4 3 1 2 2 1 3 2 3 5 5 4 3 3 2 4 1 2 2 1 3
#> [22861] 2 4 2 2 5 1 3 1 1 3 5 3 3 2 5 5 3 5 1 3 5 3 1 3 2 3 5 5 1 2 3 2 2 3 5 3
#> [22897] 3 5 3 2 3 5 1 5 4 3 5 1 2 4 3 5 3 3 2 3 3 1 5 3 2 2 3 2 2 3 2 5 4 1 5 2
#> [22933] 3 3 1 1 3 3 5 3 5 3 5 2 1 3 3 3 5 3 3 3 5 1 1 1 3 4 3 3 1 3 3 3 4 5 2 4
#> [22969] 1 1 5 2 1 1 3 2 3 1 1 1 3 1 3 1 3 5 3 5 3 5 4 3 1 3 1 3 5 1 3 2 3 5 1 4
#> [23005] 2 3 2 1 3 3 5 1 3 4 3 3 4 2 4 1 4 4 1 2 1 3 1 3 5 3 3 3 1 5 2 2 1 1 1 1
#> [23041] 5 1 4 3 3 3 3 3 2 5 5 3 1 3 3 5 3 3 1 3 3 2 5 3 3 4 3 2 3 1 3 5 3 3 1 3
#> [23077] 1 3 5 3 3 5 3 2 3 5 5 1 5 1 2 3 1 3 2 3 1 1 3 1 3 4 3 1 3 5 4 4 5 3 3 1
#> [23113] 3 1 5 4 3 1 1 2 4 3 5 3 5 3 3 2 2 2 1 5 3 2 3 3 3 2 3 1 2 1 3 4 5 2 4 5
#> [23149] 3 3 5 3 3 1 2 1 5 2 5 3 3 1 4 5 1 3 3 3 1 3 1 4 3 3 3 1 2 4 1 3 4 3 1 5
#> [23185] 1 3 5 3 3 3 5 4 3 1 2 3 3 2 1 1 1 4 1 2 3 2 3 5 3 3 2 3 3 3 2 5 3 4 3 3
#> [23221] 3 3 5 3 3 3 2 3 3 1 3 3 3 2 4 3 3 3 5 1 1 4 3 3 5 5 3 5 4 3 5 3 3 4 1 5
#> [23257] 3 5 3 3 3 5 1 2 3 1 5 3 1 3 1 5 3 4 3 4 3 3 3 1 3 3 3 3 5 2 1 3 4 1 1 3
#> [23293] 3 1 1 1 5 1 2 5 3 5 5 3 5 2 3 4 1 5 1 3 2 2 4 4 1 5 1 4 5 5 3 1 4 5 3 3
#> [23329] 5 4 1 1 1 3 3 3 1 3 5 2 5 1 4 2 1 2 3 3 1 3 3 1 2 3 5 3 2 4 2 2 2 4 5 3
#> [23365] 1 2 1 3 3 5 1 2 5 4 2 2 5 3 3 1 3 4 3 4 1 3 5 3 3 5 2 2 3 3 3 3 1 4 2 3
#> [23401] 5 3 3 3 5 4 3 1 2 3 3 3 1 3 1 3 2 1 3 5 2 5 3 5 5 3 3 5 4 3 5 5 3 1 2 5
#> [23437] 1 4 5 3 3 1 3 2 3 3 3 1 3 3 3 3 3 2 5 4 2 5 2 3 3 4 1 3 3 4 5 3 3 3 3 4
#> [23473] 5 5 3 3 3 2 3 3 5 2 5 3 3 5 3 1 3 2 2 5 2 5 3 1 1 3 3 2 1 5 5 3 3 3 1 1
#> [23509] 1 3 5 3 4 3 1 3 3 3 4 5 5 2 3 3 2 5 1 2 5 4 3 4 3 3 4 3 5 1 2 1 5 5 5 2
#> [23545] 3 3 5 3 5 3 2 5 2 3 2 2 3 4 1 1 3 4 1 2 4 5 1 3 5 1 2 2 5 5 1 3 3 1 2 4
#> [23581] 3 2 3 2 1 3 1 1 4 5 3 3 2 1 1 5 2 2 1 4 3 3 1 1 2 3 3 2 3 3 4 3 3 3 1 3
#> [23617] 3 1 5 3 1 2 5 2 1 3 3 5 3 1 1 5 3 2 4 1 1 1 4 5 1 1 3 2 1 3 3 1 2 1 3 3
#> [23653] 3 4 3 3 3 1 2 2 2 5 4 3 3 5 4 2 5 2 1 3 3 3 1 3 4 4 1 3 1 5 1 5 4 4 3 3
#> [23689] 3 4 2 2 1 4 3 3 5 5 2 4 2 3 3 4 3 2 2 3 1 3 2 4 1 3 5 5 3 4 2 3 3 3 1 1
#> [23725] 3 3 3 3 3 3 3 5 2 1 2 1 2 4 3 2 1 3 3 4 5 3 2 3 3 5 3 5 3 2 5 1 3 5 3 5
#> [23761] 3 4 4 3 5 4 5 4 2 3 5 4 1 1 1 3 5 3 3 1 1 3 3 1 1 3 1 1 3 3 5 3 2 3 3 3
#> [23797] 3 4 2 5 5 3 1 5 3 3 5 5 3 3 3 3 2 3 1 3 5 3 3 3 3 2 1 2 3 3 1 4 1 1 3 3
#> [23833] 3 1 3 5 1 3 1 1 5 1 3 2 1 5 5 3 2 2 2 3 2 1 4 3 5 1 4 4 3 4 3 5 3 5 3 5
#> [23869] 3 1 5 2 3 3 1 5 3 3 1 3 3 1 2 3 3 5 1 4 4 3 3 2 3 2 4 1 1 3 2 3 2 5 2 2
#> [23905] 2 3 5 1 4 3 3 1 3 1 3 3 4 3 5 5 1 3 4 5 1 3 5 1 1 2 3 5 1 2 1 2 3 3 1 1
#> [23941] 1 4 1 3 1 1 2 3 2 3 3 3 2 3 5 1 5 5 5 1 3 2 3 2 3 2 5 5 2 3 3 1 1 5 4 5
#> [23977] 2 1 5 4 1 1 1 4 3 3 3 2 1 3 2 5 3 3 3 1 3 2 3 5 5 5 3 2 3 4 1 4 5 3 1 1
#> [24013] 1 3 3 3 3 3 3 3 3 3 1 3 1 3 2 5 3 2 2 2 3 1 3 3 1 3 3 4 3 5 1 2 1 5 5 2
#> [24049] 3 4 4 1 1 4 4 4 4 2 3 3 4 1 3 3 3 2 2 4 3 5 1 3 3 1 1 4 3 1 3 2 4 1 1 3
#> [24085] 2 5 3 2 3 5 5 1 1 2 4 3 4 3 4 3 3 3 3 1 1 1 1 3 3 1 3 3 3 3 1 2 3 2 5 3
#> [24121] 3 1 2 2 3 5 5 1 4 2 4 3 1 2 1 5 3 2 5 3 1 3 3 4 2 5 2 3 3 3 1 5 4 4 3 3
#> [24157] 4 2 5 1 4 5 1 1 5 5 3 2 2 5 4 2 4 2 1 1 5 3 2 4 2 4 3 3 1 1 5 1 5 1 4 3
#> [24193] 1 1 3 3 4 2 4 5 3 3 4 1 5 2 5 3 3 3 2 5 5 4 5 4 3 3 5 5 4 4 3 4 4 3 4 4
#> [24229] 1 5 4 3 3 1 1 4 5 5 5 4 5 1 2 1 3 3 3 1 2 4 4 3 3 3 4 3 5 5 3 2 4 2 1 4
#> [24265] 3 1 3 3 2 3 3 3 3 4 3 3 3 3 4 5 1 1 4 5 5 1 5 3 4 3 1 1 3 1 3 1 3 3 3 4
#> [24301] 3 1 1 3 3 4 5 3 3 3 3 2 3 4 4 4 3 1 2 3 5 1 2 2 2 3 3 1 1 3 3 3 4 4 3 3
#> [24337] 1 3 3 1 2 3 3 3 2 1 2 1 3 1 2 1 4 3 4 5 3 5 4 3 1 1 3 4 1 3 5 1 5 3 5 2
#> [24373] 3 5 3 3 1 2 3 4 3 4 3 3 3 3 2 5 4 2 3 3 5 1 3 1 5 4 3 3 3 3 3 4 1 3 4 1
#> [24409] 3 1 1 4 5 5 3 3 3 1 4 3 5 5 3 3 3 5 1 3 2 1 3 3 4 5 3 1 5 4 3 3 5 5 2 1
#> [24445] 1 4 5 1 3 2 2 1 3 3 3 1 5 4 5 1 1 3 1 4 5 3 3 2 1 5 3 2 1 3 3 1 3 5 1 3
#> [24481] 5 3 3 4 4 1 1 4 3 2 1 2 4 4 3 2 3 1 1 2 1 4 1 3 3 5 3 3 1 4 4 2 3 4 3 3
#> [24517] 3 2 3 5 3 2 3 1 3 3 1 5 1 3 1 5 4 3 1 3 3 3 3 1 1 3 5 3 4 4 5 4 2 3 3 1
#> [24553] 3 2 3 5 3 1 3 3 4 1 3 2 5 5 3 2 3 3 5 1 1 1 3 5 4 3 3 1 4 1 5 1 3 4 1 3
#> [24589] 1 3 3 3 4 3 3 5 1 2 3 4 3 3 4 4 1 3 1 3 3 2 3 3 1 5 3 1 1 4 3 3 3 4 3 3
#> [24625] 1 3 3 3 3 2 2 1 5 5 3 4 3 3 4 3 1 4 3 2 5 1 1 4 1 3 1 3 3 2 2 2 1 1 4 3
#> [24661] 1 1 1 1 4 3 3 2 3 2 3 1 2 3 2 5 5 5 3 1 3 2 1 3 1 3 1 2 4 3 1 3 1 3 3 3
#> [24697] 3 3 1 1 3 1 5 1 5 1 5 5 1 1 3 5 3 4 3 3 5 5 4 5 2 2 1 2 4 2 1 3 3 3 2 5
#> [24733] 3 3 3 5 1 2 3 3 3 1 4 3 1 5 5 5 4 5 5 4 3 2 5 3 3 5 4 1 2 3 1 2 3 1 3 5
#> [24769] 2 1 2 4 3 1 3 5 5 4 3 5 3 3 4 1 1 1 3 2 1 3 1 1 2 3 2 3 5 1 5 3 3 5 2 2
#> [24805] 3 1 4 1 1 1 3 1 1 3 3 2 1 3 2 5 5 5 1 3 5 5 1 1 5 3 3 4 4 2 4 5 1 3 4 1
#> [24841] 4 4 2 5 2 1 5 5 5 5 3 5 4 3 5 3 1 1 3 3 3 3 3 2 4 2 1 1 2 4 1 1 5 1 1 1
#> [24877] 5 4 5 1 3 1 1 2 3 1 4 4 3 3 3 3 1 2 5 3 5 4 4 1 2 4 4 5 4 3 3 2 3 3 3 1
#> [24913] 1 3 2 4 1 1 1 1 3 1 4 2 4 5 5 3 2 3 5 5 3 5 3 5 3 3 4 3 5 3 5 3 5 1 1 4
#> [24949] 3 4 2 3 4 3 1 1 2 5 2 2 3 3 3 3 1 3 3 3 2 3 1 3 3 4 1 3 5 1 5 2 5 2 3 1
#> [24985] 3 5 1 3 4 5 1 3 2 5 3 1 3 3 2 2 1 3 2 1 1 5 5 3 5 1 3 4 4 3 3 2 2 3 3 5
#> [25021] 3 3 3 1 1 3 3 3 1 1 1 3 3 3 2 2 5 1 5 5 5 4 4 3 3 2 3 4 3 3 3 5 4 1 5 4
#> [25057] 3 5 1 3 1 1 3 1 4 4 1 4 1 3 3 3 3 2 5 1 1 1 2 1 3 1 1 3 3 4 3 3 2 3 1 5
#> [25093] 1 1 4 4 5 5 3 4 5 5 3 5 3 5 1 3 5 4 5 3 1 3 4 3 3 2 5 4 1 5 5 3 3 5 2 3
#> [25129] 5 4 3 4 1 3 3 4 3 5 3 4 5 1 1 4 4 3 1 1 3 3 2 2 1 2 3 2 3 1 3 3 5 5 2 3
#> [25165] 3 2 5 3 4 3 5 4 5 3 5 3 4 3 4 2 5 3 3 3 5 3 3 3 5 1 3 2 3 3 3 1 5 5 1 4
#> [25201] 5 3 4 4 1 1 3 2 3 5 3 3 5 3 3 1 5 1 3 4 2 2 3 3 1 5 1 2 4 3 3 4 3 2 4 5
#> [25237] 3 1 1 1 4 3 3 3 2 5 3 2 1 3 1 1 3 3 3 1 3 2 3 2 1 1 5 3 3 5 3 2 1 1 3 5
#> [25273] 3 3 4 2 1 3 3 4 3 3 3 3 3 5 4 2 3 3 5 1 3 3 3 3 3 4 1 5 5 4 5 3 1 1 3 2
#> [25309] 2 2 3 5 3 4 4 4 1 1 4 3 1 3 5 2 3 3 1 3 2 5 5 1 2 2 4 1 1 4 3 5 2 5 1 3
#> [25345] 3 3 4 4 3 3 3 1 4 3 3 1 3 3 3 3 3 3 2 3 3 1 1 1 3 3 1 5 5 5 1 3 3 5 3 3
#> [25381] 3 3 2 3 5 5 3 3 3 1 4 3 3 5 5 3 1 5 4 2 1 5 1 3 3 1 1 3 2 4 3 3 4 4 3 3
#> [25417] 5 2 3 5 3 1 1 3 1 4 3 5 4 5 4 1 2 1 3 1 1 3 1 4 4 3 1 1 1 4 3 5 2 1 1 1
#> [25453] 5 1 3 3 3 1 1 2 2 3 1 3 5 3 4 3 2 3 3 3 4 2 2 3 5 3 4 5 3 5 3 4 1 1 3 4
#> [25489] 1 2 3 5 3 3 1 3 2 3 3 2 5 4 3 1 3 3 4 4 5 3 4 5 5 4 1 3 2 3 5 4 3 2 5 5
#> [25525] 3 1 3 3 3 5 3 5 1 1 2 3 1 5 2 3 4 3 3 2 2 3 5 2 3 5 5 3 2 3 1 3 1 3 4 2
#> [25561] 5 1 3 1 4 5 2 1 5 5 5 3 2 1 1 3 5 5 3 1 5 5 3 1 1 2 5 2 5 5 3 3 3 3 5 2
#> [25597] 4 1 2 2 3 5 3 3 4 3 1 1 1 3 3 5 3 2 3 5 1 3 1 5 3 3 3 2 3 1 3 2 3 3 3 3
#> [25633] 2 5 4 5 4 1 2 4 4 3 5 1 1 1 1 3 1 1 3 2 3 1 3 3 1 1 1 1 3 2 4 1 2 2 1 3
#> [25669] 4 3 5 1 3 5 1 3 3 5 4 3 3 3 3 1 4 5 3 3 3 4 5 2 2 2 3 4 1 5 1 1 1 2 3 1
#> [25705] 3 1 3 3 5 3 3 3 2 1 3 5 2 3 5 2 5 3 5 1 1 3 2 1 1 3 2 1 3 3 5 3 4 2 5 1
#> [25741] 1 3 1 1 2 2 3 5 3 1 2 3 3 5 3 2 3 3 5 3 5 1 5 4 3 5 3 2 5 5 1 2 2 1 5 3
#> [25777] 3 3 2 1 3 5 5 1 1 2 4 2 5 3 3 3 1 1 3 5 2 2 3 5 3 3 2 1 3 4 4 2 1 3 3 3
#> [25813] 3 4 5 1 2 3 2 4 4 3 3 3 4 1 3 1 2 3 3 3 3 3 2 2 3 5 2 1 1 5 3 4 3 1 1 5
#> [25849] 5 3 3 3 1 2 2 2 3 2 2 4 3 1 2 4 1 1 1 2 5 3 2 1 1 3 3 1 3 3 5 3 3 2 1 1
#> [25885] 1 1 4 4 1 4 2 1 1 1 2 4 2 3 2 4 5 5 3 3 2 3 3 3 3 1 1 5 3 4 1 3 4 1 3 4
#> [25921] 2 4 3 2 3 3 2 3 1 4 3 5 1 3 3 3 3 4 2 5 5 1 3 1 5 4 1 5 4 2 4 1 3 1 5 2
#> [25957] 4 1 1 3 3 2 4 2 3 3 3 3 3 4 3 3 1 1 3 3 3 3 2 3 2 5 1 5 2 1 5 2 3 1 3 4
#> [25993] 4 1 1 3 1 2 5 1 4 5 3 1 3 2 4 5 3 1 4 3 3 3 1 2 3 5 3 2 4 1 4 3 3 1 3 4
#> [26029] 3 3 4 3 5 1 2 1 5 3 1 4 5 3 3 3 2 1 1 2 2 5 5 2 5 5 5 5 3 2 1 3 2 2 5 2
#> [26065] 1 5 3 3 3 2 1 3 2 5 3 3 3 5 1 1 3 2 4 1 1 2 4 3 5 5 5 1 3 3 3 3 3 3 5 2
#> [26101] 3 1 5 3 2 3 1 3 2 1 3 1 3 3 3 1 4 5 3 4 3 5 1 1 3 2 3 3 5 3 3 2 5 4 3 5
#> [26137] 3 5 3 4 4 3 3 5 3 5 3 3 4 2 1 2 1 3 2 1 3 2 3 4 3 5 1 1 3 5 3 3 1 5 1 4
#> [26173] 5 4 1 4 4 1 3 5 5 3 3 5 3 5 4 4 1 3 2 1 5 3 3 5 2 5 4 4 1 4 5 4 3 2 3 2
#> [26209] 1 5 3 3 3 3 3 3 3 5 2 3 1 4 1 1 3 3 3 5 1 3 1 4 3 1 1 2 3 3 1 4 3 2 1 4
#> [26245] 3 3 3 1 5 2 3 3 3 1 2 3 1 1 1 3 3 4 1 3 4 3 3 1 3 3 1 3 3 5 4 3 3 2 3 4
#> [26281] 3 2 3 3 2 3 3 2 1 1 1 5 1 1 1 4 5 5 4 3 5 2 2 5 3 4 3 3 5 3 1 1 5 3 3 3
#> [26317] 2 3 3 3 4 1 3 4 4 4 3 1 3 1 4 5 2 3 3 1 5 3 3 3 3 3 3 2 1 2 2 2 5 3 3 1
#> [26353] 1 5 3 3 4 1 1 3 5 1 3 1 3 5 4 3 3 3 2 2 2 1 3 1 3 1 3 3 3 3 1 3 3 1 3 2
#> [26389] 1 1 2 3 3 1 4 5 1 3 1 3 5 1 3 1 4 3 3 1 3 5 3 5 3 1 3 3 3 3 2 3 3 1 5 1
#> [26425] 3 4 3 1 3 5 2 2 1 1 1 3 3 3 4 5 5 3 2 3 3 5 4 3 4 3 1 3 4 4 1 1 3 3 3 3
#> [26461] 3 3 1 5 4 4 5 3 3 3 5 5 5 3 4 3 3 1 5 1 1 3 3 3 4 3 1 2 3 3 2 3 5 4 2 1
#> [26497] 5 1 3 5 3 1 3 3 3 3 1 2 4 3 2 3 5 5 3 1 2 1 3 3 5 1 3 1 3 4 3 1 5 5 5 4
#> [26533] 3 3 4 1 1 3 1 1 2 3 1 2 2 2 3 1 4 3 3 5 2 1 3 2 2 3 3 4 3 1 1 5 3 1 4 5
#> [26569] 2 1 3 1 4 3 5 5 5 1 2 1 3 4 3 1 5 3 4 3 5 1 5 3 5 4 4 3 5 3 2 5 5 1 2 3
#> [26605] 5 3 3 1 2 4 1 3 4 4 3 1 5 4 5 4 3 5 5 4 3 5 2 3 3 1 3 5 3 3 3 3 4 4 1 1
#> [26641] 5 3 3 3 2 1 3 3 2 1 2 5 2 3 3 5 2 3 3 5 5 1 3 3 1 2 3 3 5 1 5 1 4 3 5 1
#> [26677] 4 1 3 3 3 4 2 3 3 1 5 3 2 5 5 1 5 5 3 1 5 2 2 3 2 5 2 5 5 2 2 5 2 3 2 3
#> [26713] 3 2 1 2 3 3 5 3 5 3 1 2 3 3 3 4 5 3 5 3 3 2 3 3 1 3 1 5 1 3 3 5 5 1 3 2
#> [26749] 5 1 3 3 1 2 5 1 5 5 3 3 3 3 3 2 1 3 5 2 5 3 3 3 3 1 4 3 2 2 3 2 4 1 2 2
#> [26785] 3 3 5 3 3 1 3 3 3 5 5 2 2 2 3 4 3 5 2 2 5 3 1 5 3 3 2 3 1 3 1 4 3 4 4 3
#> [26821] 3 3 3 4 3 3 5 3 3 1 3 3 5 2 3 4 1 4 1 4 4 3 5 1 3 1 1 2 4 3 3 2 1 3 3 2
#> [26857] 5 3 5 1 4 1 3 5 5 4 1 1 1 1 4 3 5 4 1 1 3 4 3 5 1 5 3 3 1 3 2 5 5 5 2 5
#> [26893] 1 4 3 1 3 3 1 1 2 5 1 2 1 3 3 5 3 2 1 3 3 1 1 5 5 5 4 3 5 1 2 4 3 3 3 3
#> [26929] 2 3 5 4 3 2 3 5 1 3 3 2 4 3 3 4 3 3 3 1 3 3 4 4 1 3 3 3 1 3 3 5 5 4 1 4
#> [26965] 5 3 1 3 4 3 3 5 2 3 3 4 2 3 3 2 3 2 4 3 3 5 3 1 2 3 5 3 1 5 5 3 2 1 3 4
#> [27001] 1 3 5 5 4 3 3 3 1 5 3 3 5 4 3 5 1 5 4 4 3 1 1 3 4 4 3 5 5 2 5 3 3 3 3 1
#> [27037] 5 2 1 5 2 2 2 3 5 3 5 5 5 5 1 3 4 3 3 5 1 2 2 3 1 4 3 3 3 3 3 3 3 3 2 5
#> [27073] 3 1 1 3 1 5 1 2 3 3 4 1 5 1 4 5 3 3 3 3 5 3 5 5 3 3 4 4 2 3 5 4 1 1 1 2
#> [27109] 2 1 3 3 2 5 2 5 3 5 3 3 2 3 2 2 1 3 3 1 1 3 3 1 2 2 5 5 3 3 3 3 3 1 1 4
#> [27145] 3 3 3 1 1 3 5 3 1 1 5 3 3 5 1 4 3 2 2 1 3 5 3 3 3 3 3 3 3 4 3 3 1 2 1 5
#> [27181] 2 2 4 2 2 2 3 1 2 3 2 3 4 3 2 1 3 5 4 1 1 4 3 3 1 1 5 3 3 2 3 1 5 4 2 3
#> [27217] 3 1 3 3 2 3 4 3 2 3 3 5 3 1 3 1 4 3 2 3 3 1 3 3 2 3 1 1 5 5 3 5 1 5 2 5
#> [27253] 5 1 2 2 1 1 5 3 5 3 1 3 3 2 5 5 1 1 3 4 3 3 4 3 3 3 3 5 3 3 3 1 1 3 3 4
#> [27289] 5 3 3 1 1 4 3 2 3 5 3 1 2 3 3 3 4 3 1 1 5 3 3 2 2 5 3 3 3 2 3 3 3 1 1 4
#> [27325] 5 1 3 1 2 3 4 3 5 3 3 3 3 3 3 3 3 5 3 2 5 5 3 5 3 2 2 3 4 3 2 3 2 5 3 3
#> [27361] 1 3 4 3 5 2 1 3 5 3 5 1 3 5 3 3 1 5 3 1 2 1 3 1 3 1 3 4 3 3 3 3 1 1 5 1
#> [27397] 5 3 3 5 2 1 5 1 3 3 5 1 3 5 5 3 3 3 4 3 3 1 2 1 3 5 4 3 3 1 3 1 4 2 4 2
#> [27433] 2 5 1 1 3 4 3 1 3 4 3 1 2 3 1 2 3 3 4 3 1 1 2 3 3 2 5 5 4 3 5 4 3 4 5 3
#> [27469] 4 1 3 2 3 5 4 1 3 5 5 5 1 3 4 3 5 1 1 2 1 2 1 5 4 2 3 2 3 3 5 4 1 2 5 5
#> [27505] 1 3 1 3 3 2 1 3 3 3 4 4 1 1 3 1 5 5 5 1 5 3 5 5 2 5 1 3 5 5 5 3 1 5 3 3
#> [27541] 1 1 1 1 1 2 2 5 1 2 4 2 1 5 1 2 1 2 1 5 4 1 3 3 5 3 2 3 5 3 1 4 1 3 3 3
#> [27577] 1 4 3 3 5 3 3 1 5 2 5 5 3 1 4 2 3 3 2 4 2 1 5 3 5 3 5 1 1 3 1 5 4 4 2 5
#> [27613] 1 3 3 5 1 2 4 3 3 3 5 4 3 3 5 3 4 3 1 2 2 5 3 3 3 1 3 3 2 2 3 3 1 1 5 3
#> [27649] 1 2 5 4 1 2 4 4 3 3 4 2 1 4 1 1 1 3 3 5 4 1 5 5 5 5 2 3 1 1 4 3 5 5 5 5
#> [27685] 5 3 3 4 4 1 5 3 3 3 5 1 3 5 2 3 3 3 5 3 1 3 5 4 5 5 4 1 5 4 5 1 3 3 2 3
#> [27721] 2 3 3 5 2 3 1 1 5 3 3 3 4 5 3 3 2 2 3 2 5 1 3 2 4 3 1 5 1 2 3 1 5 2 5 1
#> [27757] 1 5 3 2 3 3 5 3 2 2 1 3 5 5 1 1 3 2 3 1 3 5 3 3 4 1 2 1 3 3 3 3 5 3 5 5
#> [27793] 3 1 3 5 3 1 4 3 5 2 3 3 3 1 5 2 5 3 3 1 3 1 3 1 5 5 4 3 4 2 2 1 3 3 3 4
#> [27829] 1 1 1 3 5 5 3 2 1 1 3 4 5 3 1 3 3 3 1 3 5 3 3 1 4 5 1 3 3 2 1 3 3 3 5 1
#> [27865] 3 5 2 2 3 2 3 1 4 4 3 3 1 1 5 5 1 3 3 1 2 4 5 3 5 1 1 1 1 3 3 4 5 3 3 5
#> [27901] 3 2 2 3 1 5 1 2 3 3 2 1 3 1 4 1 3 3 2 1 2 3 4 3 3 1 4 2 1 1 5 2 1 3 1 3
#> [27937] 3 1 3 4 2 3 2 4 2 3 1 5 3 3 4 1 4 3 3 5 3 4 5 3 4 4 5 2 1 5 4 3 5 1 2 4
#> [27973] 1 5 3 2 1 4 5 1 3 2 2 1 3 5 1 4 4 5 3 4 2 3 3 2 3 3 2 3 3 4 1 5 4 3 4 3
#> [28009] 5 2 3 3 1 3 2 1 3 3 4 3 4 5 4 2 5 1 3 5 1 3 3 1 3 4 3 3 5 2 1 5 4 1 3 3
#> [28045] 4 3 3 2 3 3 3 3 5 3 1 3 3 5 2 2 3 5 5 1 5 1 2 3 3 3 3 3 3 3 1 3 4 3 3 3
#> [28081] 3 3 3 3 5 3 1 1 5 2 1 1 5 5 1 3 3 3 3 1 3 3 3 3 3 3 5 3 3 1 3 1 3 3 3 3
#> [28117] 2 5 1 3 3 1 2 2 3 3 3 3 4 3 3 2 2 2 1 3 4 3 1 5 1 3 3 3 5 5 4 1 1 5 5 3
#> [28153] 3 1 3 3 5 1 5 1 5 1 1 1 5 5 3 3 5 1 3 3 3 3 2 3 3 2 2 1 1 1 5 3 4 1 3 1
#> [28189] 3 1 4 5 1 3 2 1 3 2 5 5 3 1 2 2 5 3 2 3 3 2 5 5 3 2 3 1 3 5 2 1 3 3 5 3
#> [28225] 3 3 3 3 3 5 3 4 1 1 1 3 3 5 3 3 4 3 5 5 3 2 2 5 1 1 4 1 1 4 3 3 1 3 4 1
#> [28261] 2 3 5 1 3 4 2 3 3 5 3 3 3 2 3 3 4 5 5 3 5 1 5 5 3 1 5 5 4 1 1 3 5 3 3 1
#> [28297] 2 5 5 4 3 3 3 1 5 5 2 5 1 3 1 1 3 1 1 5 1 3 1 3 5 3 2 3 3 3 2 3 3 1 2 2
#> [28333] 2 3 4 1 4 3 5 1 3 5 3 3 3 3 1 3 3 3 1 1 4 1 3 5 5 1 2 5 5 3 1 4 3 1 3 1
#> [28369] 5 5 3 1 1 5 1 1 4 4 3 2 2 3 2 3 1 1 1 1 5 5 3 3 3 3 3 3 5 5 4 4 3 3 5 3
#> [28405] 5 1 3 5 3 3 3 3 3 3 5 2 3 5 5 4 2 3 2 1 2 3 1 3 3 3 5 5 5 3 3 3 2 1 3 3
#> [28441] 1 3 1 1 5 3 1 4 1 2 5 4 5 1 3 3 3 5 1 1 3 2 1 2 4 1 5 5 3 1 2 3 3 3 3 3
#> [28477] 1 5 1 4 3 5 1 2 5 3 2 2 1 1 3 3 5 2 4 2 1 2 2 5 1 3 5 5 5 1 3 2 3 2 1 5
#> [28513] 2 4 3 3 1 4 3 1 5 2 3 4 1 5 3 3 3 3 5 1 3 2 2 3 5 3 5 4 5 2 3 1 4 2 3 2
#> [28549] 3 4 3 2 5 3 1 3 1 2 1 5 3 1 3 4 1 5 3 3 5 1 2 5 4 3 2 1 2 3 3 3 4 3 5 4
#> [28585] 3 3 3 1 1 1 3 4 5 4 2 1 5 3 3 2 2 1 3 3 5 3 2 3 3 1 5 5 3 1 2 3 3 3 3 2
#> [28621] 3 5 3 3 3 5 4 3 1 1 2 3 1 4 3 2 1 4 4 3 5 2 1 1 3 1 1 5 3 2 2 3 4 3 4 3
#> [28657] 2 3 3 5 5 3 2 3 3 3 5 5 3 1 5 3 1 1 1 2 3 5 2 5 2 4 5 4 1 3 2 2 4 1 3 1
#> [28693] 3 2 2 1 3 5 4 3 5 3 3 4 2 3 4 1 4 3 1 3 5 5 3 4 3 2 1 1 4 1 3 1 1 3 3 3
#> [28729] 3 5 5 4 2 1 1 2 5 3 3 5 3 3 3 1 1 3 2 3 5 3 3 4 1 3 1 3 2 4 4 5 1 2 3 4
#> [28765] 1 4 3 1 2 3 3 1 5 5 5 1 5 5 5 3 2 5 2 3 3 2 5 5 3 2 5 3 1 2 2 1 1 1 1 2
#> [28801] 3 5 4 4 3 2 3 5 3 1 3 2 3 2 1 2 1 5 3 1 1 3 2 2 5 5 3 5 3 4 4 3 3 4 1 3
#> [28837] 5 4 3 1 5 2 5 5 5 3 3 3 1 5 3 1 2 5 2 3 5 3 1 3 5 3 4 4 3 5 5 1 2 1 3 2
#> [28873] 3 3 5 1 1 5 5 5 2 3 1 1 1 3 3 3 3 2 4 5 1 2 1 3 1 3 1 2 4 3 5 1 3 3 3 1
#> [28909] 3 3 2 3 4 3 3 1 5 4 4 3 3 3 5 2 5 1 5 1 2 5 1 4 4 3 1 5 3 3 2 2 5 3 5 4
#> [28945] 4 2 4 2 5 1 1 3 1 1 1 1 2 3 1 5 1 1 4 3 1 2 5 3 4 3 1 2 4 3 3 3 1 1 3 4
#> [28981] 3 3 3 3 1 3 5 2 4 1 1 4 2 3 5 2 3 2 5 1 3 2 1 3 3 3 3 3 3 3 1 3 4 1 4 1
#> [29017] 1 4 3 3 2 3 4 5 1 1 5 1 3 1 3 3 2 4 3 5 1 4 2 5 3 3 3 5 3 3 1 2 2 5 3 3
#> [29053] 1 2 1 5 3 3 2 2 2 1 2 1 2 5 2 5 5 3 5 3 2 5 1 2 3 1 4 2 1 1 1 5 5 1 1 2
#> [29089] 3 5 1 3 3 2 1 4 3 4 3 2 5 2 5 4 3 1 3 2 5 3 2 4 3 3 2 3 5 1 3 3 2 1 3 4
#> [29125] 3 1 3 3 1 1 3 4 3 5 4 3 4 5 3 1 4 1 4 1 3 5 4 3 5 3 3 2 2 4 5 4 5 3 3 1
#> [29161] 4 3 4 3 4 1 4 5 5 3 1 5 3 5 3 3 3 3 1 5 2 3 4 1 3 3 3 3 4 1 3 3 2 2 2 3
#> [29197] 4 3 2 4 3 5 3 5 3 3 4 3 3 3 1 3 3 3 2 3 4 2 3 2 3 3 3 2 3 1 3 1 4 1 1 3
#> [29233] 1 3 3 4 3 3 5 1 3 3 3 4 1 4 3 3 3 2 3 3 4 4 4 3 1 1 5 4 3 1 3 3 3 5 5 4
#> [29269] 1 5 5 3 5 2 4 5 3 3 3 1 3 3 3 5 3 3 4 3 1 1 1 1 1 5 4 2 3 3 2 3 3 3 5 3
#> [29305] 3 1 3 5 3 3 4 1 1 3 3 3 3 3 1 5 3 5 3 3 3 5 2 5 5 4 3 3 3 3 1 1 3 2 3 3
#> [29341] 3 3 3 5 1 3 3 4 3 1 5 3 1 2 2 1 1 3 3 3 1 3 5 3 3 3 1 2 1 2 5 5 5 1 3 4
#> [29377] 3 1 1 1 4 3 1 3 1 1 3 1 1 1 2 2 3 4 3 4 3 4 1 3 5 2 4 1 1 5 2 3 1 2 3 1
#> [29413] 3 5 4 3 1 1 3 5 3 3 5 2 3 2 1 5 3 3 1 3 3 3 5 1 2 1 3 3 2 4 4 5 2 3 3 3
#> [29449] 5 2 5 3 5 2 3 1 3 2 3 3 3 1 5 3 4 3 1 1 1 2 3 4 3 1 1 1 1 3 5 3 1 4 2 4
#> [29485] 3 4 1 3 2 1 3 3 3 2 2 5 2 2 5 3 1 4 2 3 4 4 1 5 2 1 1 3 2 3 1 4 3 3 3 2
#> [29521] 5 1 5 3 5 4 1 1 3 3 2 5 3 1 5 3 1 2 1 3 1 5 1 5 3 3 3 2 3 4 4 4 4 1 3 4
#> [29557] 2 3 1 5 1 1 3 3 3 3 3 3 5 4 3 1 1 3 5 3 2 3 3 5 1 5 3 2 3 3 5 1 5 3 2 3
#> [29593] 2 1 3 2 2 4 5 3 5 3 5 3 4 3 3 3 3 4 1 1 3 5 5 2 2 3 3 1 4 5 2 4 3 3 3 1
#> [29629] 1 3 1 3 1 2 4 1 3 5 1 5 3 2 2 3 3 3 3 1 5 2 5 1 4 5 1 4 1 3 3 3 4 3 2 3
#> [29665] 2 5 3 5 1 3 5 5 3 2 3 3 3 1 1 5 1 1 2 5 3 5 4 3 2 3 4 3 5 5 3 5 3 1 3 2
#> [29701] 2 2 4 3 5 3 5 3 3 4 4 5 4 2 2 5 3 2 4 3 3 2 5 1 4 3 3 3 2 3 1 1 4 5 2 1
#> [29737] 3 5 3 3 4 3 4 3 2 1 3 4 3 3 1 2 3 5 1 3 3 1 3 1 1 3 3 3 3 5 4 3 3 1 2 2
#> [29773] 4 4 5 3 2 1 3 4 5 3 2 2 3 5 1 2 5 3 2 1 3 4 2 1 4 1 1 2 5 3 5 4 5 3 1 4
#> [29809] 1 2 5 5 2 4 3 3 2 1 5 3 1 2 5 2 4 3 3 1 3 2 5 2 5 3 1 5 3 4 2 2 5 4 5 5
#> [29845] 3 3 5 2 4 2 4 4 1 1 3 3 3 4 2 2 1 2 5 2 3 1 4 3 4 5 3 3 3 3 3 3 3 3 2 4
#> [29881] 1 1 1 2 1 1 3 5 2 5 2 4 3 3 2 2 2 4 4 4 3 4 1 4 2 5 5 2 2 5 3 1 1 5 3 2
#> [29917] 3 4 4 4 5 2 1 3 5 4 5 3 3 3 3 1 1 1 3 5 3 5 5 5 4 4 3 3 5 3 1 3 5 1 5 5
#> [29953] 5 4 4 4 5 5 1 3 3 1 1 3 2 3 4 2 2 2 2 2 2 4 4 4 3 4 5 5 3 1 3 3 1 2 1 3
#> [29989] 1 2 5 2 1 3 4 4 1 3 3 5 1 5 3 3 3 3 2 3 3 3 4 1 1 4 2 2 5 3 5 5 1 4 1 1
#> [30025] 1 5 1 1 1 1 2 2 5 5 4 5 1 2 5 3 3 4 5 3 3 3 3 2 3 1 1 3 3 3 2 3 1 3 3 3
#> [30061] 5 4 2 5 1 2 5 1 3 3 4 5 3 5 3 1 5 3 1 1 3 3 3 5 1 3 3 4 1 5 4 3 2 1 5 1
#> [30097] 3 3 1 3 3 1 1 1 3 1 3 1 3 2 3 3 5 2 3 4 4 5 3 1 5 1 3 5 1 3 3 1 3 5 5 4
#> [30133] 5 4 3 3 4 3 5 2 1 1 1 1 1 3 3 3 4 5 5 5 2 4 3 3 4 1 3 5 1 2 4 3 3 3 3 2
#> [30169] 5 1 3 5 5 5 2 2 3 5 5 3 2 3 5 2 3 3 4 2 5 5 3 3 3 1 2 1 1 5 5 1 5 3 1 3
#> [30205] 1 3 2 5 5 3 2 3 3 1 1 3 4 3 1 3 4 5 3 3 4 3 1 5 3 3 3 1 5 1 3 1 2 3 1 3
#> [30241] 3 5 1 2 2 3 3 1 1 3 1 2 2 3 5 2 3 3 3 4 3 1 5 1 5 5 1 3 2 3 1 3 4 1 3 5
#> [30277] 3 2 2 5 3 4 3 3 3 3 3 1 2 3 3 3 3 1 3 4 3 1 3 1 3 4 5 1 1 3 3 1 5 1 4 3
#> [30313] 5 3 4 4 5 1 4 4 3 3 3 1 1 1 1 4 1 1 1 1 4 3 3 2 1 4 3 4 2 4 2 5 3 1 2 2
#> [30349] 3 1 5 5 4 3 2 1 3 2 1 3 2 5 3 1 1 5 3 5 3 3 3 3 1 3 1 5 3 3 3 3 3 3 2 1
#> [30385] 4 5 2 4 2 3 2 2 3 1 2 5 1 4 3 2 3 5 1 2 1 5 2 3 1 5 4 2 3 3 1 2 5 3 3 3
#> [30421] 3 5 1 4 5 3 3 4 1 3 1 5 2 3 5 3 1 4 5 2 2 1 4 4 1 5 5 1 1 5 2 5 5 3 3 3
#> [30457] 1 3 1 1 3 5 2 4 3 3 3 5 1 5 1 5 1 5 3 3 3 3 4 3 3 4 5 3 5 3 1 2 4 3 3 1
#> [30493] 5 2 5 3 3 3 2 2 3 3 3 3 1 1 1 2 2 2 3 1 3 3 4 5 5 4 3 3 3 5 2 5 1 4 1 3
#> [30529] 1 1 4 4 1 5 4 4 3 2 5 3 5 3 4 3 3 5 1 3 3 2 1 4 3 1 5 3 3 3 5 1 3 5 5 3
#> [30565] 3 4 4 1 1 1 3 1 1 4 3 5 2 3 3 3 3 2 1 3 3 2 5 1 2 3 2 5 3 1 3 2 1 4 1 2
#> [30601] 5 1 2 3 2 2 3 5 2 3 5 3 4 4 3 1 3 3 4 4 3 3 1 3 2 5 2 3 1 5 2 2 3 1 3 4
#> [30637] 3 4 2 4 1 5 1 3 3 3 2 3 3 2 3 3 1 3 3 3 1 1 3 3 3 2 1 3 5 3 3 3 5 3 2 3
#> [30673] 5 3 3 1 3 3 3 3 3 4 3 3 1 4 2 4 3 5 1 1 1 3 5 1 5 3 5 3 4 3 1 3 4 2 2 3
#> [30709] 2 1 1 3 5 2 1 3 3 1 2 5 3 5 1 3 3 2 1 2 3 3 3 1 1 3 4 1 3 1 5 5 3 1 3 5
#> [30745] 2 3 5 3 3 1 5 2 3 1 2 2 1 1 3 4 5 4 2 2 1 2 5 1 3 3 3 5 3 3 1 4 1 1 3 2
#> [30781] 1 3 4 5 2 3 3 1 3 3 3 1 3 2 5 3 3 5 3 4 5 3 2 3 3 3 1 1 4 1 3 1 1 2 3 5
#> [30817] 3 1 5 5 1 5 5 3 2 4 2 3 1 4 3 3 3 2 1 3 5 5 3 3 3 3 3 3 2 1 5 4 4 1 3 5
#> [30853] 2 3 3 2 1 3 1 2 3 4 3 5 1 5 5 1 1 3 1 3 1 3 2 3 3 1 3 1 4 5 1 3 3 1 2 3
#> [30889] 2 2 3 3 1 4 1 2 5 3 3 5 3 4 3 4 3 1 2 4 3 1 1 5 5 1 2 3 2 1 1 4 4 3 3 1
#> [30925] 3 2 1 5 5 1 1 4 3 3 3 2 5 1 2 3 1 3 5 5 1 1 1 4 2 1 2 3 4 4 3 3 5 2 5 5
#> [30961] 3 5 3 3 2 1 1 5 5 3 3 3 4 4 3 3 1 3 1 1 2 2 2 3 3 5 4 4 2 3 2 5 3 1 1 3
#> [30997] 1 4 3 3 4 1 3 4 2 3 4 3 1 2 1 1 3 3 3 1 4 4 3 3 1 5 5 5 5 3 3 3 3 3 2 5
#> [31033] 3 5 5 3 1 4 2 2 3 3 1 4 3 3 3 3 4 2 1 5 3 2 1 1 1 5 2 3 2 3 2 3 1 2 1 3
#> [31069] 1 3 1 1 3 3 3 5 3 3 4 3 3 1 1 3 2 3 4 4 3 3 1 2 2 1 5 3 3 3 1 3 3 3 5 5
#> [31105] 3 2 5 3 3 3 1 5 5 4 1 5 4 1 1 3 5 3 3 3 2 3 3 3 5 4 3 5 3 3 5 2 2 1 1 1
#> [31141] 1 2 4 3 4 4 5 4 2 3 4 1 1 3 2 3 5 5 5 5 2 3 3 3 1 3 3 1 2 3 3 3 3 5 3 5
#> [31177] 3 3 5 1 4 3 4 1 2 3 5 4 1 5 3 3 3 1 1 3 3 2 3 2 1 5 3 2 3 3 3 1 3 3 3 4
#> [31213] 3 4 3 1 3 3 5 3 4 3 2 3 4 3 2 2 3 3 3 5 2 4 5 5 5 2 1 3 5 5 5 3 1 4 2 3
#> [31249] 3 3 5 4 3 3 1 3 1 2 2 3 1 2 3 3 2 1 3 5 4 2 3 2 2 4 5 1 3 4 5 3 4 3 2 5
#> [31285] 1 2 3 3 1 3 3 2 3 5 3 3 3 3 2 1 3 4 1 1 5 2 4 1 3 3 2 5 3 1 1 5 1 5 4 2
#> [31321] 5 4 4 1 4 5 2 1 3 4 1 5 1 2 1 2 4 1 3 5 1 2 3 1 2 5 5 2 5 1 5 2 3 5 3 1
#> [31357] 3 1 5 3 3 3 1 2 1 5 3 3 4 3 2 5 2 2 5 2 5 1 1 5 1 5 4 2 3 4 3 3 5 5 3 3
#> [31393] 3 2 3 3 1 2 3 5 1 3 3 3 4 2 3 5 2 3 4 4 3 4 1 5 1 3 5 3 5 1 3 3 4 3 5 3
#> [31429] 3 3 2 3 5 3 5 1 5 2 5 3 3 1 2 1 1 1 3 1 3 1 3 3 2 5 1 2 4 2 3 3 3 2 3 3
#> [31465] 3 1 3 3 3 3 3 1 1 3 3 3 5 5 2 1 1 2 2 5 3 3 5 3 3 3 3 4 4 1 1 2 5 3 3 5
#> [31501] 3 1 3 1 1 2 5 4 1 2 1 1 1 1 1 5 3 4 1 5 5 1 3 1 3 4 1 4 2 5 1 3 3 3 3 1
#> [31537] 3 3 5 3 3 5 1 4 3 1 3 5 5 4 1 4 2 2 1 5 3 2 5 4 5 4 3 3 3 3 1 2 3 2 3 4
#> [31573] 3 3 3 3 1 2 2 5 5 1 1 2 5 5 4 5 4 3 2 5 4 1 4 2 5 5 3 1 4 4 1 5 4 5 3 1
#> [31609] 3 4 5 3 3 4 4 3 3 5 2 1 3 5 3 5 3 5 2 1 1 3 1 4 3 3 3 5 3 3 4 1 1 1 3 5
#> [31645] 3 3 2 3 1 5 3 5 3 3 5 4 5 5 3 4 3 3 3 2 1 2 4 3 3 1 5 5 5 4 2 2 5 3 1 2
#> [31681] 3 1 3 1 4 5 5 1 5 2 3 3 3 1 2 3 5 4 2 3 5 1 1 5 1 2 3 1 2 5 3 5 1 3 1 5
#> [31717] 4 5 4 3 3 2 2 4 4 1 4 1 5 3 3 1 5 4 3 2 1 5 3 4 4 1 4 3 1 1 5 1 3 3 3 1
#> [31753] 1 5 3 1 2 1 3 3 1 3 2 1 3 3 1 2 5 3 2 5 3 2 3 5 1 3 2 5 2 5 5 3 4 3 3 4
#> [31789] 2 3 3 1 5 3 1 1 1 3 4 3 2 5 4 1 3 3 2 1 1 4 2 4 1 5 1 3 1 1 1 4 4 5 4 5
#> [31825] 4 2 5 3 5 3 4 5 5 2 3 4 3 2 5 2 3 4 4 2 3 2 1 4 3 3 2 3 4 2 5 5 3 3 3 3
#> [31861] 3 3 5 4 1 5 1 3 3 5 1 3 3 2 2 3 1 1 1 1 1 1 3 5 3 2 1 1 1 2 3 1 1 5 2 4
#> [31897] 3 3 5 3 1 1 1 1 3 1 3 1 2 1 4 3 4 1 1 5 3 5 3 3 5 3 3 4 3 3 3 5 1 2 2 3
#> [31933] 3 1 1 5 5 5 5 2 4 3 1 3 5 1 2 3 3 3 3 3 2 1 3 2 2 3 4 2 3 3 3 4 4 3 1 5
#> [31969] 2 4 3 1 3 4 1 1 3 3 3 1 5 3 5 3 3 4 3 1 5 5 3 3 2 3 3 2 3 5 2 3 1 2 2 3
#> [32005] 5 3 3 4 1 1 3 1 3 1 2 5 3 4 4 3 5 5 3 1 3 2 2 2 5 1 3 2 3 3 3 3 2 2 3 3
#> [32041] 2 1 1 2 3 1 3 1 1 2 1 3 3 4 1 1 3 1 5 3 3 1 5 5 2 4 3 5 1 3 5 5 2 4 5 2
#> [32077] 1 2 3 5 1 3 3 4 5 3 2 4 3 2 3 2 5 3 3 1 3 3 3 4 3 1 2 3 3 2 2 1 4 5 3 3
#> [32113] 5 5 4 1 2 5 2 2 3 1 2 3 3 3 4 1 3 3 3 4 4 1 5 3 1 1 1 3 3 3 1 2 3 3 1 1
#> [32149] 4 1 3 1 3 3 5 2 1 1 2 3 3 2 3 3 5 5 1 2 3 1 2 2 5 1 3 1 2 3 3 5 3 3 3 5
#> [32185] 1 3 2 3 4 3 3 2 5 1 3 4 3 3 4 4 3 4 3 1 3 4 2 3 1 5 2 3 3 3 3 3 3 4 2 4
#> [32221] 4 2 3 4 5 3 2 1 3 2 4 5 4 1 5 3 2 5 5 4 3 1 3 1 1 3 5 5 2 5 1 1 3 5 4 5
#> [32257] 1 1 2 1 3 2 3 5 3 1 1 5 3 1 4 3 3 3 3 3 3 5 4 1 3 3 2 3 2 3 1 5 3 1 1 1
#> [32293] 3 3 1 1 2 1 3 2 3 3 5 3 4 5 5 3 3 4 3 2 4 3 1 3 3 5 3 3 3 4 3 1 3 4 3 5
#> [32329] 1 1 3 5 1 4 3 3 2 3 1 3 1 4 3 2 1 4 3 5 1 3 2 5 3 3 3 2 3 1 1 1 5 2 1 2
#> [32365] 3 1 5 2 5 1 3 2 5 3 5 3 1 2 5 5 3 3 3 1 2 3 5 4 3 3 1 3 2 3 2 3 3 2 1 3
#> [32401] 3 4 1 5 3 2 5 5 4 4 2 5 4 3 1 4 5 3 3 3 3 2 5 5 4 2 2 3 4 3 1 1 4 2 5 4
#> [32437] 5 5 2 3 3 4 1 1 5 3 3 4 3 5 5 3 5 3 5 2 5 3 5 3 1 5 5 5 4 5 1 3 3 3 3 1
#> [32473] 4 1 3 3 3 2 5 5 3 5 3 1 5 3 5 5 1 5 1 5 3 4 1 3 4 3 3 2 1 3 1 4 5 5 3 3
#> [32509] 3 1 1 1 3 4 4 3 3 2 3 1 5 4 3 2 3 2 3 3 5 3 3 5 5 4 1 2 2 5 3 3 3 3 2 3
#> [32545] 5 1 5 1 3 5 3 1 2 5 3 3 2 3 3 5 3 5 1 3 3 1 1 5 2 4 3 2 3 4 3 2 3 5 4 5
#> [32581] 2 3 3 3 3 1 4 3 3 4 4 3 3 2 1 2 4 1 5 3 3 1 1 5 3 3 5 3 1 4 1 2 5 4 2 3
#> [32617] 4 3 2 3 3 3 3 2 3 3 3 3 5 2 4 1 1 2 4 4 3 1 2 3 3 3 4 3 5 1 2 2 3 3 5 3
#> [32653] 1 3 5 3 5 3 3 3 2 5 5 3 3 3 2 1 4 3 3 5 1 5 1 1 1 3 5 1 3 3 1 1 3 5 1 5
#> [32689] 3 4 5 2 2 2 2 3 5 3 3 1 3 4 3 3 4 1 1 4 3 4 3 5 1 3 3 5 5 2 2 2 5 1 3 3
#> [32725] 1 3 5 1 5 5 2 3 3 3 3 5 1 3 1 1 3 3 3 3 1 3 3 4 1 3 5 3 2 3 1 2 1 4 2 1
#> [32761] 3 2 3 3 3 5 3 3 1 3 1 2 3 2 1 4 3 1 5 5 2 2 3 1 3 2 1 5 2 5 1 3 2 3 3 1
#> [32797] 1 5 1 2 3 3 1 3 2 2 1 1 3 1 5 3 3 3 3 1 2 5 1 5 3 3 5 3 5 1 3 1 3 3 3 2
#> [32833] 5 2 3 4 3 2 3 5 3 3 3 4 5 2 3 3 2 4 3 3 3 3 3 5 1 3 5 4 1 2 3 3 3 4 3 3
#> [32869] 5 3 3 2 3 5 2 1 3 3 1 1 2 2 1 1 5 3 1 1 5 3 4 5 1 1 5 5 2 3 1 4 3 4 4 5
#> [32905] 4 1 2 3 5 2 3 1 3 3 2 3 3 1 3 3 3 1 4 3 3 1 2 3 5 3 5 5 3 3 1 5 1 3 1 4
#> [32941] 3 1 2 1 3 1 3 3 3 4 3 2 1 5 2 4 3 3 2 5 3 4 3 4 3 1 3 1 3 1 1 3 3 3 3 1
#> [32977] 3 3 3 3 4 2 2 5 2 3 1 3 1 5 5 3 3 1 2 2 3 3 3 5 3 1 3 1 3 3 3 1 1 3 1 1
#> [33013] 5 3 1 5 3 1 5 1 1 4 4 3 3 5 2 3 4 1 5 3 2 5 1 3 5 4 4 3 3 5 4 1 4 4 1 2
#> [33049] 3 3 5 2 2 4 2 3 3 5 4 5 1 3 2 4 1 5 1 2 4 3 5 5 3 4 4 1 3 5 2 1 3 3 1 5
#> [33085] 4 1 3 4 3 2 3 2 3 4 2 3 1 3 1 3 1 3 1 3 3 5 2 1 5 3 1 3 3 3 3 3 3 4 5 4
#> [33121] 3 3 3 3 1 5 1 2 1 5 4 4 1 4 1 3 1 3 4 3 5 3 3 3 2 5 3 1 4 5 1 3 4 4 1 3
#> [33157] 3 3 4 3 3 4 1 3 2 1 5 4 5 3 3 3 5 5 4 3 1 5 3 4 2 1 5 1 1 2 5 5 1 1 3 3
#> [33193] 5 5 2 4 3 5 3 1 5 5 1 3 3 5 2 2 3 5 4 2 1 2 4 3 1 4 5 3 3 1 3 3 5 1 3 3
#> [33229] 5 3 2 5 2 3 1 1 4 5 1 3 5 3 1 3 2 3 4 5 2 4 3 3 1 2 3 1 2 4 1 1 4 3 3 5
#> [33265] 3 3 3 2 5 1 3 1 4 3 3 1 1 5 2 3 3 1 2 3 3 1 2 3 1 3 5 1 2 3 3 3 3 1 1 3
#> [33301] 1 5 3 4 3 4 5 1 3 3 1 3 4 1 4 3 5 5 3 1 1 4 2 3 5 2 3 3 3 5 3 1 3 4 3 5
#> [33337] 3 2 1 3 5 3 3 3 3 3 3 3 3 2 1 1 5 1 3 3 5 3 3 3 2 5 2 3 5 2 3 2 1 4 4 3
#> [33373] 2 4 5 3 2 5 1 3 2 4 1 1 4 3 5 3 4 1 1 3 3 3 5 4 5 4 3 2 4 3 5 1 3 3 1 3
#> [33409] 1 3 4 5 1 3 1 1 1 3 5 4 3 3 5 3 5 5 3 2 3 2 4 3 5 3 1 3 3 1 1 3 4 3 1 1
#> [33445] 3 1 3 2 2 1 2 2 3 1 5 1 1 5 4 1 3 2 5 2 5 4 1 3 2 3 5 1 1 2 3 3 2 1 2 2
#> [33481] 1 3 3 4 5 1 1 3 4 5 3 5 3 3 3 1 2 1 4 4 1 3 5 1 3 1 1 2 5 3 3 2 3 3 4 3
#> [33517] 2 2 3 5 4 1 3 4 5 3 3 1 1 1 3 5 4 3 4 4 5 2 4 3 4 3 2 3 3 1 2 1 3 5 3 3
#> [33553] 2 3 3 4 3 5 3 1 3 3 3 5 2 3 4 3 1 3 3 5 1 5 5 5 1 3 4 3 1 1 3 3 3 3 3 2
#> [33589] 2 3 3 3 3 1 1 3 5 3 3 1 3 2 3 3 3 2 3 3 3 5 3 5 1 5 2 5 3 4 1 4 1 4 3 1
#> [33625] 3 5 3 3 5 2 3 3 3 5 3 4 2 4 1 4 3 5 3 3 3 5 5 5 3 1 3 5 3 5 5 4 2 4 4 4
#> [33661] 2 5 4 1 3 2 5 4 4 1 5 3 1 5 4 3 3 2 4 5 3 5 1 4 2 3 3 3 1 3 5 4 5 3 3 1
#> [33697] 3 1 3 1 2 4 2 3 5 5 3 3 3 2 3 1 3 1 2 5 2 5 5 4 3 1 3 3 5 3 1 5 1 4 3 3
#> [33733] 3 3 1 5 1 2 1 3 1 3 2 5 2 1 3 4 1 1 1 5 2 1 2 3 2 3 5 2 1 1 3 3 3 3 4 3
#> [33769] 3 3 3 3 5 3 1 5 1 2 3 2 3 1 3 1 3 2 3 3 5 3 1 3 3 4 3 3 5 1 4 5 5 3 4 3
#> [33805] 5 1 3 1 5 2 4 1 3 4 1 1 4 3 5 3 3 2 3 3 1 2 5 3 3 1 1 1 2 1 3 3 4 3 3 3
#> [33841] 2 1 4 2 1 2 3 3 3 3 3 5 5 1 3 5 4 5 2 2 2 2 3 1 3 3 3 3 5 4 4 3 1 5 5 1
#> [33877] 1 1 3 3 3 3 2 3 4 1 5 5 4 5 3 5 3 1 3 5 3 5 2 3 4 3 3 3 5 3 1 4 4 2 2 3
#> [33913] 2 5 3 5 5 1 3 5 1 5 5 2 1 5 5 3 1 3 3 5 5 5 3 3 2 3 3 3 3 5 3 2 3 3 5 3
#> [33949] 1 5 1 3 3 3 5 1 3 3 1 2 1 3 3 3 1 4 1 3 3 4 3 3 4 1 1 3 3 1 1 1 3 5 5 3
#> [33985] 5 4 5 2 3 5 3 3 1 3 2 2 1 3 3 5 2 4 5 4 5 3 3 4 3 2 2 3 5 3 3 3 3 5 3 4
#> [34021] 2 3 3 2 5 3 5 3 3 4 5 1 3 2 4 2 3 3 2 2 3 5 5 3 3 1 3 3 3 2 3 1 5 2 3 3
#> [34057] 1 3 3 3 4 3 3 3 1 3 1 3 2 3 4 4 4 1 4 5 1 4 4 5 2 2 3 5 5 5 5 3 1 3 5 3
#> [34093] 1 2 3 3 2 5 3 4 2 3 3 3 3 3 3 2 2 5 3 3 4 2 3 3 4 5 2 3 3 5 3 5 3 3 3 3
#> [34129] 1 1 2 1 3 4 1 3 3 3 2 5 4 3 3 1 3 3 2 3 5 3 1 1 3 3 3 3 1 3 5 3 5 4 3 3
#> [34165] 3 1 3 2 5 5 5 3 3 5 3 2 5 4 4 3 3 3 3 1 3 5 3 4 3 3 1 3 3 3 3 3 3 5 3 3
#> [34201] 3 1 1 5 2 3 3 2 3 1 3 3 3 4 2 5 2 1 1 5 3 3 3 3 1 3 2 4 3 3 3 3 5 3 4 3
#> [34237] 1 1 3 4 3 2 3 5 1 2 4 4 3 5 5 3 4 1 4 3 5 2 1 1 3 3 3 1 4 2 3 3 5 5 4 5
#> [34273] 1 3 3 3 4 5 1 4 3 3 4 1 3 3 2 3 2 3 1 4 3 3 5 5 5 5 3 4 3 3 3 3 4 5 1 5
#> [34309] 2 3 5 1 4 5 2 3 4 5 3 3 3 3 1 2 3 3 3 3 5 3 1 2 1 1 1 4 1 5 3 4 5 1 5 5
#> [34345] 3 1 3 4 4 5 5 5 1 1 3 1 1 3 1 2 1 3 3 5 3 3 4 1 3 2 4 2 5 1 3 4 1 1 1 4
#> [34381] 1 1 5 2 1 3 3 3 3 3 2 3 2 2 4 3 1 1 2 5 1 2 5 5 4 3 1 2 1 2 3 4 2 2 1 1
#> [34417] 1 3 3 1 4 3 3 2 3 4 2 3 4 3 3 3 3 3 3 5 2 3 1 2 3 1 2 5 3 4 3 1 3 4 3 1
#> [34453] 3 3 4 3 3 1 3 3 3 4 1 4 5 3 1 3 2 1 4 1 2 3 5 1 4 1 1 5 3 1 1 3 1 4 5 1
#> [34489] 5 3 2 2 5 3 1 3 4 2 5 3 5 2 3 5 1 4 2 4 1 1 1 5 3 2 3 2 3 3 3 2 3 3 5 5
#> [34525] 2 1 2 5 3 2 1 5 4 4 1 3 3 4 4 3 4 3 3 3 5 3 3 3 2 3 3 3 1 3 5 3 3 3 2 5
#> [34561] 4 3 1 4 5 4 3 2 1 3 1 3 3 2 3 5 3 4 3 2 1 5 1 2 3 2 3 5 3 2 2 1 3 2 4 2
#> [34597] 3 3 5 2 1 5 1 3 5 3 2 3 5 3 3 4 5 1 3 1 2 5 4 3 1 3 4 3 3 3 3 3 3 3 2 4
#> [34633] 2 5 5 3 5 3 2 4 4 4 3 3 2 2 2 5 3 1 2 5 5 3 1 3 5 3 1 3 1 5 5 3 4 1 3 3
#> [34669] 2 3 1 2 2 5 3 3 1 3 4 2 3 3 5 3 1 4 3 4 5 3 3 3 3 2 3 1 2 1 3 3 2 3 4 1
#> [34705] 4 1 2 5 4 2 1 2 3 3 1 2 1 5 2 1 3 3 3 5 2 5 4 2 2 1 3 3 5 5 3 4 5 4 3 3
#> [34741] 3 1 3 3 2 3 3 5 5 1 2 3 4 5 2 1 1 4 3 5 3 5 4 2 5 3 3 5 3 4 3 4 5 3 3 1
#> [34777] 3 5 5 2 3 2 3 2 4 2 3 3 2 4 3 1 5 4 1 1 2 3 1 3 4 3 1 3 5 5 5 1 3 5 1 3
#> [34813] 3 1 1 5 5 4 3 2 1 2 4 1 1 3 1 2 3 3 2 3 3 4 2 1 5 1 1 1 5 3 4 4 3 4 3 3
#> [34849] 4 3 5 3 1 3 5 3 3 1 1 3 3 5 4 4 5 3 5 2 5 5 4 3 3 2 5 2 5 1 3 2 2 1 3 3
#> [34885] 4 4 1 4 3 1 1 2 3 2 3 4 5 5 3 1 3 3 1 4 3 3 3 2 2 1 1 5 3 4 1 3 3 1 3 3
#> [34921] 1 5 4 1 2 5 3 3 3 3 4 5 2 3 5 1 3 3 3 4 3 1 3 5 3 1 3 2 4 3 1 4 1 3 1 4
#> [34957] 4 1 1 2 5 3 3 2 2 3 1 3 1 1 1 1 1 3 1 2 1 1 3 3 2 5 5 5 1 4 3 4 1 1 5 3
#> [34993] 3 3 3 1 1 4 3 3 2 3 5 5 1 5 3 3 4 4 2 5 4 1 1 1 1 3 3 3 3 3 4 4 3 2 3 1
#> [35029] 3 2 3 3 3 5 4 3 5 5 1 4 5 3 5 1 3 3 5 3 1 1 3 4 4 3 1 1 1 3 3 5 1 4 3 4
#> [35065] 3 3 2 3 2 3 5 2 3 5 5 3 3 5 1 5 3 5 3 5 1 5 1 2 2 3 3 2 3 1 1 1 3 5 1 4
#> [35101] 3 3 1 4 3 1 1 3 2 3 4 5 4 1 3 1 1 3 5 3 1 2 1 3 4 2 4 3 3 3 1 3 1 3 2 1
#> [35137] 5 3 1 2 1 3 3 3 1 1 4 1 2 1 3 3 3 2 1 1 3 3 1 1 1 1 3 5 2 1 2 5 5 3 5 1
#> [35173] 4 4 4 3 3 3 2 5 5 1 2 3 5 1 5 1 5 1 5 5 3 3 4 4 5 2 2 4 4 5 5 1 1 1 1 3
#> [35209] 3 3 4 1 5 3 1 3 1 4 3 2 1 1 3 5 3 3 3 3 1 1 5 3 3 3 4 5 1 1 5 3 1 3 1 3
#> [35245] 3 3 1 1 3 5 3 1 3 4 2 1 3 3 1 3 1 3 5 3 4 3 3 4 5 3 3 3 3 4 1 1 3 3 3 1
#> [35281] 5 3 4 5 3 3 3 2 3 1 1 5 2 3 2 3 1 2 3 2 1 4 5 2 4 3 3 1 1 5 3 1 2 3 3 3
#> [35317] 3 3 1 2 3 1 2 2 5 1 3 4 2 1 3 2 1 5 3 3 1 4 3 1 4 5 3 5 1 5 4 1 4 4 5 5
#> [35353] 5 1 3 3 2 3 4 1 1 3 5 5 2 3 3 4 5 5 2 4 5 4 3 3 5 2 1 3 1 1 5 1 2 5 5 5
#> [35389] 3 1 2 1 3 3 2 5 2 2 5 3 3 3 4 4 5 1 3 3 4 3 3 1 3 3 3 5 1 3 3 1 1 4 2 3
#> [35425] 5 3 3 4 3 5 3 2 3 5 1 2 3 3 5 4 5 3 1 2 1 1 1 3 2 1 3 5 5 5 2 3 3 3 3 1
#> [35461] 3 3 3 3 3 5 1 3 1 3 1 3 2 1 2 4 3 3 3 1 3 1 3 3 3 3 3 3 3 3 1 5 5 2 5 3
#> [35497] 4 3 5 3 4 3 3 5 4 1 1 1 3 1 2 2 3 3 5 1 3 4 2 4 3 3 1 5 3 3 3 3 3 3 3 3
#> [35533] 3 2 5 3 1 3 3 5 1 2 3 3 2 4 5 2 1 4 3 2 3 3 3 1 1 1 3 3 1 3 4 2 3 4 3 2
#> [35569] 2 3 1 3 4 3 3 1 3 1 1 3 3 3 2 5 1 5 4 5 5 2 3 3 2 5 4 3 4 1 4 5 3 3 3 3
#> [35605] 4 3 3 1 3 5 5 5 3 3 3 2 5 5 3 3 1 1 3 5 4 3 5 2 2 3 3 3 3 3 1 2 4 5 5 3
#> [35641] 3 3 3 1 5 5 2 2 1 4 5 1 1 1 3 1 3 1 1 3 2 2 2 3 3 5 1 3 1 3 4 2 3 2 3 3
#> [35677] 1 3 3 3 3 5 1 3 1 4 3 5 5 4 4 3 2 1 3 1 1 5 2 1 1 3 3 1 5 1 1 5 3 1 3 3
#> [35713] 4 1 3 5 1 5 3 1 3 1 5 4 5 1 1 3 3 3 3 2 3 5 2 5 5 5 3 3 1 2 3 3 3 4 3 2
#> [35749] 2 1 3 3 5 5 5 4 5 2 3 2 1 2 3 2 5 1 3 2 1 3 3 1 3 3 3 3 2 5 2 4 3 1 2 5
#> [35785] 5 4 3 3 3 5 3 2 3 5 1 1 4 4 3 1 3 4 3 3 4 3 2 2 1 3 3 4 3 2 2 5 1 1 3 4
#> [35821] 5 3 5 2 3 4 3 1 5 3 3 2 1 3 3 5 1 3 5 1 1 3 1 5 3 2 1 4 3 4 1 1 3 1 3 4
#> [35857] 2 5 3 3 3 3 2 1 4 3 2 3 3 3 5 4 2 3 5 5 3 4 3 5 4 3 1 4 3 3 3 5 1 5 2 2
#> [35893] 3 3 1 4 3 2 2 5 2 4 3 1 1 1 3 1 5 2 1 1 2 1 3 3 3 4 2 1 4 4 4 5 5 1 5 3
#> [35929] 1 1 2 1 5 3 3 5 1 3 1 3 3 3 1 5 2 3 4 2 2 3 3 5 3 3 1 3 1 5 2 3 1 3 2 4
#> [35965] 5 4 1 2 4 3 5 3 3 3 1 5 2 3 4 3 2 2 3 5 3 3 1 2 3 3 4 1 3 1 3 3 3 3 3 3
#> [36001] 1 3 3 3 2 1 1 5 3 1 4 4 2 3 1 2 1 3 1 3 2 2 5 1 3 5 3 2 1 5 5 5 5 3 3 1
#> [36037] 1 3 3 2 4 5 3 1 5 1 2 2 2 2 3 5 4 4 4 3 5 3 2 1 3 3 3 1 3 1 1 1 3 3 2 3
#> [36073] 3 3 1 3 3 3 3 2 4 3 2 3 3 1 2 3 5 3 2 3 3 3 1 3 3 5 3 3 1 2 5 5 3 1 3 3
#> [36109] 2 3 2 3 3 3 3 3 4 1 5 5 2 2 2 1 3 2 2 3 3 3 3 4 5 3 1 1 3 4 4 1 4 5 1 5
#> [36145] 1 3 3 3 3 1 3 3 3 5 2 1 5 3 1 1 3 1 3 3 1 3 1 3 3 4 5 3 5 3 3 3 1 3 1 1
#> [36181] 3 3 3 4 3 3 3 3 3 5 3 5 5 3 4 2 2 3 3 3 2 2 3 2 1 3 4 1 3 3 1 3 3 2 3 1
#> [36217] 1 1 5 2 3 3 4 2 3 3 1 3 3 4 5 5 3 1 3 1 3 3 3 1 4 5 3 4 3 3 2 5 3 3 3 3
#> [36253] 5 2 5 3 2 1 5 4 4 5 1 5 5 3 3 4 5 3 5 1 4 3 3 3 3 4 2 3 3 3 4 5 5 2 1 4
#> [36289] 3 3 3 1 3 3 5 2 1 3 2 2 2 4 3 5 3 2 2 3 3 3 3 3 5 1 3 5 5 4 1 2 3 3 5 3
#> [36325] 5 3 2 4 4 1 2 3 4 3 1 5 4 4 3 5 3 3 1 1 2 3 1 3 3 3 3 4 3 1 4 4 3 2 3 2
#> [36361] 1 5 5 3 3 5 5 3 2 2 3 3 3 5 4 5 5 3 3 1 3 2 4 5 3 3 4 1 4 3 1 3 3 4 3 3
#> [36397] 2 5 5 3 3 1 3 1 2 3 3 3 5 3 3 3 4 3 3 3 3 3 1 3 1 2 1 5 5 2 2 2 3 3 4 5
#> [36433] 3 2 1 1 2 4 1 5 3 3 3 3 2 2 1 3 1 3 3 3 5 3 1 5 3 2 3 4 1 3 5 3 1 4 3 1
#> [36469] 2 2 3 4 4 3 5 1 3 2 5 4 2 3 4 2 1 1 2 3 3 1 3 3 2 5 3 4 3 5 3 3 2 3 3 3
#> [36505] 1 1 5 2 2 2 2 5 2 1 3 5 1 3 5 1 2 4 3 3 1 3 1 4 5 5 2 3 5 1 4 3 3 1 3 2
#> [36541] 2 2 1 2 4 1 5 3 1 1 3 3 5 3 1 3 3 1 3 1 3 2 3 1 3 3 2 1 1 5 4 2 4 3 2 4
#> [36577] 2 5 5 5 2 3 3 5 3 3 3 3 1 5 1 3 3 3 3 3 1 1 1 2 1 3 1 5 2 1 5 3 1 5 3 2
#> [36613] 1 1 3 3 1 5 3 3 5 1 1 1 3 3 1 1 5 1 3 2 3 3 4 1 5 3 5 3 3 2 1 4 2 5 2 1
#> [36649] 2 3 4 4 2 1 3 3 4 5 3 5 3 3 3 1 4 4 3 1 3 3 3 5 3 3 1 2 1 3 2 5 4 5 3 2
#> [36685] 4 3 1 3 4 2 3 3 5 4 2 1 3 4 5 2 3 1 3 2 3 1 3 2 1 5 3 3 1 5 4 1 2 5 3 5
#> [36721] 3 3 1 2 1 3 1 2 3 4 3 3 5 1 2 2 5 4 4 5 5 1 1 5 1 5 1 1 1 3 3 5 3 3 3 3
#> [36757] 3 3 5 4 5 3 3 4 3 2 5 2 3 3 3 4 3 3 5 3 3 1 3 5 1 5 1 3 4 2 1 3 3 5 2 1
#> [36793] 2 4 3 5 1 3 2 4 3 1 4 4 2 5 3 2 4 2 4 3 3 3 5 5 3 4 3 2 2 3 4 1 4 3 2 3
#> [36829] 3 4 3 5 1 4 3 3 3 2 3 3 3 3 1 2 3 5 2 5 4 1 3 1 5 3 3 3 4 1 3 2 5 4 4 2
#> [36865] 1 3 1 5 3 1 3 3 3 5 5 3 1 2 3 3 3 1 3 3 1 3 3 3 3 2 3 3 3 5 2 1 4 1 3 1
#> [36901] 3 3 2 3 3 3 3 3 3 1 5 3 3 2 3 5 1 3 4 1 3 1 2 3 1 3 4 4 5 3 2 2 1 1 1 1
#> [36937] 4 5 2 3 3 5 1 3 2 5 3 4 2 3 2 4 1 3 5 3 4 4 5 1 3 5 1 3 2 1 4 3 3 5 3 1
#> [36973] 2 3 2 1 5 2 3 1 3 4 4 3 3 1 1 5 2 2 3 3 1 2 3 3 1 5 5 4 2 4 5 2 5 3 1 2
#> [37009] 4 2 1 5 4 2 2 4 3 1 4 3 4 4 4 4 3 3 2 3 2 2 4 2 1 4 3 5 3 3 5 1 3 1 5 4
#> [37045] 3 3 4 1 3 5 1 2 1 2 1 1 3 3 4 5 1 1 4 5 3 3 3 5 3 3 3 4 1 1 5 2 2 3 2 3
#> [37081] 2 3 2 5 2 3 1 1 2 4 3 4 1 1 2 2 1 4 4 1 4 1 5 3 5 1 3 3 3 1 1 5 3 5 3 3
#> [37117] 3 3 2 4 3 3 3 1 4 3 5 4 3 3 5 3 3 1 5 3 1 3 1 3 5 3 1 3 1 3 1 1 3 1 2 1
#> [37153] 1 5 2 1 4 3 5 4 4 4 2 4 1 3 2 3 3 1 3 1 5 2 4 4 2 1 3 2 3 1 3 1 5 2 5 1
#> [37189] 3 4 3 4 1 4 3 3 3 3 3 1 4 1 5 1 1 2 3 3 1 5 2 3 2 4 3 1 3 3 1 5 4 3 5 1
#> [37225] 3 5 4 3 5 3 4 1 5 3 3 3 3 2 1 5 5 3 2 3 3 3 5 1 4 1 3 3 2 5 4 3 3 3 5 3
#> [37261] 3 4 1 3 1 4 3 4 5 3 4 3 1 4 2 3 3 1 2 2 2 5 4 1 3 1 3 4 4 2 2 5 5 4 5 2
#> [37297] 4 3 2 3 3 1 2 5 1 1 5 4 1 3 1 1 3 4 1 5 4 4 4 2 1 3 3 2 5 2 5 1 2 3 3 3
#> [37333] 3 2 1 3 5 3 1 4 1 3 4 3 3 3 5 1 5 3 2 3 1 3 2 1 1 4 3 3 3 3 3 3 1 3 5 5
#> [37369] 4 3 3 3 1 1 1 3 3 4 1 3 1 3 2 2 2 3 1 1 3 3 3 5 3 3 4 5 1 4 3 3 3 2 3 1
#> [37405] 1 3 4 2 1 2 3 5 1 3 4 3 3 4 4 1 5 3 1 5 3 3 3 5 2 4 1 5 3 2 2 3 2 3 3 3
#> [37441] 3 3 5 4 1 2 4 4 3 2 1 2 1 3 1 2 3 1 2 4 5 3 2 1 3 4 1 3 3 4 1 5 1 3 4 5
#> [37477] 3 1 3 1 3 1 1 3 3 3 3 5 1 3 2 2 3 1 4 3 5 1 3 4 3 3 5 1 1 1 3 5 2 3 3 3
#> [37513] 2 1 4 4 3 1 4 3 3 1 5 5 5 3 3 3 3 5 1 3 4 2 3 1 3 1 1 1 3 3 2 3 5 3 3 3
#> [37549] 4 3 5 2 1 1 3 3 4 3 3 3 5 3 3 4 1 3 1 3 3 3 5 1 4 3 1 3 5 4 5 3 3 3 5 1
#> [37585] 1 1 3 1 3 3 3 3 5 3 3 1 4 1 4 3 3 2 1 2 2 4 4 2 3 3 1 3 4 3 3 3 5 4 3 2
#> [37621] 2 3 3 1 3 3 2 1 3 1 5 2 2 1 2 3 5 3 5 1 1 3 4 3 3 1 5 3 3 5 3 5 3 2 4 3
#> [37657] 5 3 4 3 2 4 5 3 1 2 3 3 1 1 3 2 2 1 1 5 3 3 3 5 2 3 1 3 2 2 3 3 4 2 3 1
#> [37693] 3 2 3 5 1 3 5 3 4 1 2 2 4 5 3 1 5 2 3 4 4 3 3 3 1 5 1 3 3 3 2 1 3 3 5 3
#> [37729] 1 3 5 4 5 5 1 3 2 3 3 1 4 1 5 5 4 3 3 3 3 3 4 1 5 4 4 5 4 4 3 1 5 5 3 3
#> [37765] 2 1 3 2 3 3 1 3 2 5 1 3 1 3 3 5 3 4 3 2 2 4 3 4 5 1 4 5 3 3 2 1 1 1 4 1
#> [37801] 3 1 5 4 4 4 4 5 5 3 2 4 2 2 1 3 3 3 4 1 3 3 1 5 5 5 3 3 5 3 5 4 3 3 5 3
#> [37837] 1 1 1 3 2 2 5 5 1 4 3 3 2 5 3 4 3 4 3 5 1 1 3 5 5 4 2 3 3 3 3 5 1 1 5 3
#> [37873] 4 3 4 3 2 3 2 3 5 5 3 2 1 4 2 3 1 4 3 5 3 4 2 2 3 3 5 1 1 3 5 1 3 1 2 1
#> [37909] 3 2 4 4 1 1 1 3 3 3 3 1 3 2 3 3 3 4 2 1 1 1 3 1 2 3 3 3 2 2 3 5 3 4 5 3
#> [37945] 3 4 1 5 3 1 3 1 1 3 3 3 3 4 3 3 1 1 3 2 2 1 3 4 1 5 1 1 5 3 2 3 3 3 1 3
#> [37981] 2 3 1 5 5 3 3 1 5 3 1 2 2 1 3 3 3 1 2 1 3 2 3 5 5 3 3 5 2 5 3 3 2 3 3 2
#> [38017] 4 4 2 3 1 1 1 5 2 2 1 3 2 5 3 1 2 3 1 4 3 2 1 3 2 2 5 1 5 1 1 5 4 3 1 5
#> [38053] 4 4 2 1 3 5 4 1 1 1 1 3 3 3 5 3 1 2 1 2 1 3 1 3 1 2 3 3 3 3 5 3 3 5 5 3
#> [38089] 1 5 4 4 4 4 5 3 2 3 1 3 1 4 1 3 2 2 2 2 3 1 1 3 1 1 5 5 3 3 2 5 1 3 3 5
#> [38125] 5 1 3 2 2 3 3 2 5 5 5 1 5 3 3 3 3 3 3 3 5 4 3 5 3 5 3 4 2 1 2 1 4 3 3 5
#> [38161] 2 2 4 5 3 5 5 3 1 1 5 3 5 5 1 3 5 4 3 1 1 3 2 4 2 2 5 5 1 5 3 1 3 3 2 3
#> [38197] 4 1 1 2 2 1 4 4 3 3 5 3 4 3 1 3 3 3 4 3 3 5
#>
#> Within cluster sum of squares by cluster:
#> [1] 82994.12 61206.77 110798.28 74278.60 30572.70
#> (between_SS / total_SS = 47.7 %)
#>
#> Available components:
#>
#> [1] "cluster" "centers" "totss" "withinss" "tot.withinss"
#> [6] "betweenss" "size" "iter" "ifault"
We can now attach the clusters back to the data-frame:
<- cbind(DATA_65.impute.sample, cluster=km$cluster)
df.cluster
%>%
df.cluster select(cluster, all_of(colnames(df.cluster))) %>%
head()
#> cluster SEQN DIABETES Gender Race Family_Income BPXDI3 BPXSY3
#> 1 2 49315 0 Female Black $10,000 to $14,999 0.93103091 -1.0509978
#> 2 2 12656 0 Male Other <NA> 0.61498539 -1.1784710
#> 3 2 75508 0 Male White $35,000 to $44,999 0.93103091 -0.9235245
#> 4 2 39286 0 Female Black <NA> 0.45696263 0.2237348
#> 5 3 96820 0 Male White $20,000 to $24,999 0.14091710 -0.2861583
#> 6 5 101514 0 Female Other $25,000 to $34,999 0.02758816 -0.2632931
#> BPXDI2 BPXSY2 BPXDI1 BPXSY1 BMXLEG BPXML1
#> 1 0.45560151 -1.3159807 0.2908770907 -1.5604544 0.8364784 -0.8312833
#> 2 0.77614628 -1.0666961 0.7728788919 -1.0748524 -0.3969271 -0.3202789
#> 3 0.61587389 -0.8174115 0.9335461590 -1.0748524 1.6500011 0.1907255
#> 4 0.29532912 0.4290114 -0.1911247104 0.5033540 0.3903530 0.7017299
#> 5 0.45560151 -0.3188424 0.7728788919 -0.4678500 1.1513904 -0.3202789
#> 6 0.01842516 -0.2704832 0.0009582346 -0.2705987 -0.6899635 -0.2279253
#> BPXPLS PEASCTM1 BMXWAIST BMXBMI BMXHT BMXARMC
#> 1 0.6742685 0.721939570 0.7788639 0.5919049 0.4208552 0.56225066
#> 2 -0.2218206 -0.178901222 -0.1850887 -0.1390703 0.2104422 0.24176592
#> 3 1.3911398 1.351235051 -0.5338554 -0.5820856 1.1237243 0.10242472
#> 4 -2.1932166 0.549529849 0.5415088 0.3510154 0.4477165 0.06062237
#> 5 1.7495754 0.140934143 1.0937228 0.4008546 1.3878598 1.21715426
#> 6 0.1725892 0.008049367 -1.9289225 -1.3850507 -2.7398171 -1.80654961
#> BMXARML Poverty_Income_Ratio BMXWT Age DIABETES_factor
#> 1 0.9094677 -1.1137083 0.58471445 -0.3785749 0
#> 2 0.2779486 -0.6380018 -0.03573447 0.2342063 0
#> 3 0.6726480 -0.7487827 0.18244537 -0.7462436 0
#> 4 0.7673759 1.7731137 0.44153393 0.4793187 0
#> 5 0.9884076 -0.6836175 1.19493620 0.6018750 0
#> 6 -2.5165231 -0.8204646 -1.71299201 -1.1956165 0
10.7.1.1 So what?
We can modify cat_feature_explore
from Section 9.2.2.2 to create:
<- function(data, factor, feature){
proc_chi_square
<- enquo(feature)
enquo_feature <- enquo(factor)
enquo_factor
<- data %>%
tmp select(!!enquo_factor, !!enquo_feature) %>%
collect()
<- table(tmp)
table1
<- table(tmp %>% select(!!enquo_feature, !!enquo_factor) )
table2
<- vcd::mosaic(table2, gp = vcd::shading_max)
plot_chi_square_residuals
<- gplots::balloonplot(table2,
plot_balloon main ="Balloon Plot for Gender by Diabetes \n Area is proportional to Freq.")
return( list(Frequency_Table = table2,
plot_chi_square_residuals = plot_chi_square_residuals,
plot_balloon = plot_balloon))
}
Now let’s run Chi-Square on it:
proc_chi_square(df.cluster, DIABETES, cluster)
#> $Frequency_Table
#> DIABETES
#> cluster 0 1
#> 1 5241 57
#> 2 13694 718
#> 3 6747 1126
#> 4 3523 831
#> 5 6275 6
#>
#> $plot_chi_square_residuals
#> DIABETES 0 1
#> cluster
#> 1 5241 57
#> 2 13694 718
#> 3 6747 1126
#> 4 3523 831
#> 5 6275 6
#>
#> $plot_balloon
#> NULL
10.7.2 Effectiveness of k-means clusters as features
If you’re still skeptical because df.cluster
is a sample of A_DATA_2.Num.impute
then we can project the clusters onto all of A_DATA_2.Num.impute
:
<- A_DATA_2.Num.impute %>%
A_DATA_2.Num.impute_scale mutate_at(all_of(features_65_num$feature), scale)
library(clue)
<- clue::cl_predict(km,
cluster %>% select(all_of(features_65_num$feature))
A_DATA_2.Num.impute_scale
)
$.cluster <- factor(as.numeric(as.character(cluster))) A_DATA_2.Num.impute_scale
Now run proc_chi_square
on it:
proc_chi_square(A_DATA_2.Num.impute_scale, DIABETES, .cluster)
#> $Frequency_Table
#> DIABETES
#> .cluster 0 1
#> 1 13005 186
#> 2 34482 1779
#> 3 16694 2776
#> 4 8875 2052
#> 5 15684 14
#>
#> $plot_chi_square_residuals
#> DIABETES 0 1
#> .cluster
#> 1 13005 186
#> 2 34482 1779
#> 3 16694 2776
#> 4 8875 2052
#> 5 15684 14
#>
#> $plot_balloon
#> NULL
Above, we can see Diabetics are much more concentrated in Clusters 2, 3, & 4 than the others.
%>%
A_DATA_2.Num.impute_scale group_by(.cluster) %>%
summarise(N_Diabetic = sum(DIABETES))
#> # A tibble: 5 x 2
#> .cluster N_Diabetic
#> <fct> <dbl>
#> 1 1 186
#> 2 2 1779
#> 3 3 2776
#> 4 4 2052
#> 5 5 14
\(~\)
\(~\)
10.8 Disscussion
The functions in this chapter compared to the others.