11 Extra exercises

11.1 Multivariate regression model with quantitatives independent variables

Example 11.1 Limestone

limestone <- rep(c(0,0.25,2,3.72), each=25)

organic <- rep(c(0,5,10,20,40), each=5)

msf <- c(0.45,0.46,0.51,0.90,0.79,5.58,5.38,5.21,5.16,6.39,5.74,5.38,6.01,4.99,5.99,6.65,6.27,6.19,6.82,
         7.03,6.61,7.97,7.33,8.21,6.66,0.95,1.27,5.62,6.08,1.01,5.13,8.56,4.11,5.64,4.97,5.62,6.78,5.35,
                 5.22,6.15,6.26,6.81,5.57,6.32,6.31,7.91,7.05,6.32,7.88,7.03,2.01,5.49,2.44,1.18,3.93,6.07,5.22,
                 6.28,5.94,5.37,5.76,6.68,6.25,5.83,6.31,6.55,6.22,6.93,6.85,6.68,6.49,6.83,7.05,7.05,6.32,1.31,
                 1.02,1.33,1.22,1.86,4.64,4.95,6.24,5.61,6.30,6.41,5.43,5.57,6.28,6.43,6.29,6.70,6.12,6.27,6.68,
                 3.48,2.21,3.95,6.56,6.77)

dat <- data.frame(limestone=limestone, organic=organic, msf=msf)

Visual analysis

library(lattice)
library(latticeExtra)
library(tidyr)


xyplot(msf ~ organic|factor(limestone), data=dat, ylab="Dry leaf matter (g)", type=c("a","p"),
       scales=list(alternating=1), xlab=expression(paste('Organic matter (g/dm'^{3},')')))
Dry leaf matter by organic matter at different levels of limestone

Figure 11.1: Dry leaf matter by organic matter at different levels of limestone

xyplot(msf ~ limestone|factor(organic), data=dat, ylab="Dry leaf matter (g)", type=c("a","p"),
       scales=list(alternating=1), xlab=expression(paste('Limestone (g/dm'^{3},')')))
Dry leaf matter by limestone at different levels of organic matter

Figure 11.2: Dry leaf matter by limestone at different levels of organic matter

library(scatterplot3d)

funct <- colorRamp(c("blue","red"))

mscol <- with(dat, (msf - min(msf)) / diff(range(msf)))

cols <- funct(mscol)


col.f <-  rgb(cols, maxColorValue=256)


cloud(msf ~ organic + limestone, data=dat,
           col=col.f,
           scales = list(arrows = FALSE, y=list(at=c(0.25,2,3.72))),
           screen = list(z = 30, x = -60),
           xlab=list(expression(paste('Organic matter (g/dm'^{3},')')), rot=20),
           ylab=list(expression(paste('Limestone (g/dm'^{3},')')), rot=-48),
           zlab=list('Dry matter (g)', rot=95),
           par.box = list(col=c(1,1,NA,NA,1,NA,1,1,1)))

Full Model

model.full <- lm(msf ~ limestone*organic + I(organic^2) + I(limestone^2), data=dat)
anova(model.full)
## Analysis of Variance Table
## 
## Response: msf
##                   Df  Sum Sq Mean Sq F value    Pr(>F)    
## limestone          1   3.365   3.365  1.9812  0.162564    
## organic            1 123.834 123.834 72.9086 2.338e-13 ***
## I(organic^2)       1 104.419 104.419 61.4776 6.881e-12 ***
## I(limestone^2)     1   8.215   8.215  4.8366  0.030314 *  
## limestone:organic  1  14.265  14.265  8.3986  0.004673 ** 
## Residuals         94 159.658   1.698                      
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model.full)
## 
## Call:
## lm(formula = msf ~ limestone * organic + I(organic^2) + I(limestone^2), 
##     data = dat)
## 
## Residuals:
##     Min      1Q  Median      3Q     Max 
## -2.6133 -0.9845 -0.0151  0.8648  4.2209 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)        2.4585670  0.3243515   7.580 2.41e-11 ***
## limestone          0.8884810  0.3610980   2.460  0.01570 *  
## organic            0.3708702  0.0362838  10.221  < 2e-16 ***
## I(organic^2)      -0.0064387  0.0008212  -7.841 6.88e-12 ***
## I(limestone^2)    -0.2039747  0.0927482  -2.199  0.03031 *  
## limestone:organic -0.0178137  0.0061468  -2.898  0.00467 ** 
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 1.303 on 94 degrees of freedom
## Multiple R-squared:  0.6141, Adjusted R-squared:  0.5936 
## F-statistic: 29.92 on 5 and 94 DF,  p-value: < 2.2e-16

Model selection

library(MASS)

mod.sel <- stepAIC(model.full)
## Start:  AIC=58.79
## msf ~ limestone * organic + I(organic^2) + I(limestone^2)
## 
##                     Df Sum of Sq    RSS     AIC
## <none>                           159.66  58.786
## - I(limestone^2)     1     8.215 167.87  61.804
## - limestone:organic  1    14.265 173.92  65.344
## - I(organic^2)       1   104.419 264.08 107.107

Final model

\[E(y) = 2.458 + 0.888*limestone + 0.371*organic - 0.006^{2}*organic - 0.204^{2}*limestone - 0.017*organic*limestone\]

Predictions

limestone <- c(seq(0,3.76,0.12), 0.94)
organic <- c(seq(0,40,2.5), 29.58)


graf.f <- expand.grid(limestone=limestone,organic=organic)


pred <- predict(model.full, newdata=graf.f)

graf.f[["Pred"]] <- pred
wireframe(Pred ~ organic + limestone, data=graf.f,
           drape=TRUE, colorkey=TRUE, #par.settings = standard.theme(color = FALSE),
           col='transparent', 
           scales = list(arrows = FALSE, y=list(at=c(0.25,2,3.72))),
           screen = list(z = 30, x = -60),
           xlab=list(expression(paste('Organic matter (g/dm'^{3},')')), rot=20),
           ylab=list(expression(paste('Limestone (g/dm'^{3},')')), rot=-48),
           zlab=list('Dry leaf matter', rot=95),
           par.box = list(col=c(1,1,NA,NA,1,NA,1,1,1)))

Finding of maximum points of the equation

Use of the online calculator is recommended: Critical Point Calculator

x (limestone) = 0.94

y (organic matter) = 29.58

Therefore, the maximum recommended concentration for limestone and organic matter is 0.94 \((g/dm^{3})\) and 29.58 \((g/dm^{3})\) respectively, whose maximum expected dry leaf matter is 7.95g.

11.2 Regression model with quantitative and qualitative variables

Example 11.2 Analysis of the growth of fungal hyphae.

The experiment was conducted to determine the effects of the duration of water exposure in a 24-hour period in two different fungi.

Questions:

Do the two fungi being tested have the same growth pattern? Can I use the same model for both fungi?

water.time <- rep(c(2,4,6,8,12,16,20,24), each=6)

fungi <- rep(c("S1","S2"), each=length(water.time))

fungi.l <- c(1.50,1.50,1.37,1.89,1.00,1.00,1.57,1.63,1.30,1.48,1.00,1.00,1.53,1.72,1.65,2.18,1.78,1.77,2.64,
            3.02,2.57,2.82,2.10,2.51,4.12,2.44,3.37,4.05,3.93,2.94,3.64,3.27,3.62,2.92,4.26,3.54,2.78,3.13,
                        2.70,2.88,2.48,3.80,3.20,3.30,3.64,3.15,2.65,3.26,1.00,1.20,1.34,1.34,1.24,1.38,1.12,1.17,1.18,
                        1.14,1.18,1.16,1.00,1.35,1.10,1.06,1.35,1.17,2.56,2.70,2.74,2.40,2.44,2.80,1.54,1.03,2.00,1.00,
                        2.05,1.39,4.81,3.08,3.25,3.30,3.36,2.97,2.00,1.97,2.26,2.07,1.90,2.04,1.95,2.50,2.60,2.21,2.30,2.56)

data <- data.frame(water=water.time, fungi=fungi, resp=fungi.l)
head(data)
##   water fungi resp
## 1     2    S1 1.50
## 2     2    S1 1.50
## 3     2    S1 1.37
## 4     2    S1 1.89
## 5     2    S1 1.00
## 6     2    S1 1.00
library(lattice)

xyplot(resp ~ water, groups=fungi, data=data, type=c("smooth","p"), auto.key=list(space="top", columns=2))

Model selection

library(MASS)


model.f <- lm(resp ~ fungi*water + fungi*I(water^2), data=data)
summary(model.f)
## 
## Call:
## lm(formula = resp ~ fungi * water + fungi * I(water^2), data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.30946 -0.40215 -0.05681  0.34781  2.31039 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)         0.415141   0.258053   1.609   0.1112    
## fungiS2             0.169263   0.364942   0.464   0.6439    
## water               0.341045   0.050322   6.777 1.24e-09 ***
## I(water^2)         -0.009646   0.001910  -5.050 2.30e-06 ***
## fungiS2:water      -0.125127   0.071166  -1.758   0.0821 .  
## fungiS2:I(water^2)  0.003632   0.002701   1.345   0.1821    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.579 on 90 degrees of freedom
## Multiple R-squared:  0.6378, Adjusted R-squared:  0.6176 
## F-statistic: 31.69 on 5 and 90 DF,  p-value: < 2.2e-16
model.s <- stepAIC(model.f)
## Start:  AIC=-99.11
## resp ~ fungi * water + fungi * I(water^2)
## 
##                    Df Sum of Sq    RSS     AIC
## - fungi:I(water^2)  1   0.60615 30.779 -99.200
## <none>                          30.173 -99.110
## - fungi:water       1   1.03640 31.210 -97.867
## 
## Step:  AIC=-99.2
## resp ~ fungi + water + I(water^2) + fungi:water
## 
##               Df Sum of Sq    RSS     AIC
## <none>                     30.779 -99.200
## - fungi:water  1    1.3351 32.115 -97.124
## - I(water^2)   1   11.2653 42.045 -71.259
summary(model.s)
## 
## Call:
## lm(formula = resp ~ fungi + water + I(water^2) + fungi:water, 
##     data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -1.41087 -0.40119 -0.04103  0.38231  2.22590 
## 
## Coefficients:
##                Estimate Std. Error t value Pr(>|t|)    
## (Intercept)    0.611694   0.213600   2.864   0.0052 ** 
## fungiS2       -0.223843   0.219398  -1.020   0.3103    
## water          0.294420   0.036630   8.038 3.20e-12 ***
## I(water^2)    -0.007830   0.001357  -5.771 1.08e-07 ***
## fungiS2:water -0.031876   0.016044  -1.987   0.0500 *  
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.5816 on 91 degrees of freedom
## Multiple R-squared:  0.6305, Adjusted R-squared:  0.6142 
## F-statistic: 38.82 on 4 and 91 DF,  p-value: < 2.2e-16

The stepwise methodology using the AIC criteria for model selection presented the following models:

Fungi S1: \(E(y) = \beta_{0} + \beta_{1}X + \beta_{2c}x^{2}\)

Fungi S2: \(E(y) = \beta_{0} + \beta_{1}X + \beta_{2c}X^{2}\)

Equations

Fungi S1: \(0.611694 + 0.294420X - 0.0078x^{2}\)

\(\beta_{0}\) for S2 is \((Intercept) - fungiS2\) = \(0.611694-0.223843=0.3878\)

\(\beta_{1}\) for S2 is \(water - fungiS2:water\) = \(0.294420-0.031876=0.2625\)

Fungi S2: \(0.3878 + 0.2625X - 0.0078x^{2}\)

Maximum

S1: 18.87 hours

\(f_{s1}(18.87) = 0.611694 + 0.294420(18.87) - 0.0078(18.87)^{2} = 3.39\)

S2: 16.82 hours

\(f_{s2}(16.82) = 0.3878 + 0.2625(16.82) - 0.0078(16.82)^{2} = 2.59\)

Predictions

library(tactile)
library(latticeExtra)


pred <- predict(model.s, interval="confidence")

xyplot(pred[,1] ~ water, groups=fungi, data=data, type="l",
       ylim=c(0,4), xlab="Water (hours)", ylab="Length (mm)",
       lower=pred[,2], upper=pred[,3],
             scales=list(x=list(at=c(seq(0,25, by=5),16.82,18.87))),
       auto.key=list(space="top", columns=2),
             panel=function(...){
             panel.xyplot(...)
             panel.ci(..., alpha=0.25, grid=TRUE)
             panel.segments(x0=c(18.87,16.82), y0=c(0,0), x1=c(18.87,16.82), y1=c(3.39,2.59), lty=2)
             }) +
             as.layer(xyplot(resp ~ water, groups=fungi, data=data))

11.3 Multiple regression model with quantitative and qualitative variables

Example 11.3 Analysis of the growth of fungal hyphae.

The experiment was conducted to determine the effects of the duration of water exposure in a 24-hour period and temperature (degrees Celsius) in two different fungi.

Questions:

Do the two fungi being tested have the same growth pattern? Can I use the same model for both fungi?

water.time <- rep(c(4,8,12), each=9)

temperature <- rep(c(10,15,20,25,30,35,28), each=27)

fungi <- rep(c("S1","S2"), each=189)


fungi.l <- c(1.69,1.63,1.38,1.44,1.70,1.61,1.96,1.82,1.38,1.80,1.83,2.17,1.86,1.78,1.72,1.48,2.06,1.48,1.00,1.50,2.30,1.80,
             1.80,1.50,1.90,1.50,1.00,1.71,1.52,1.41,1.50,1.80,1.76,1.62,1.61,1.61,2.53,2.32,1.78,1.73,1.86,1.74,1.83,1.80,1.95,
                         1.76,1.96,1.33,2.18,1.90,2.01,2.20,2.45,2.23,2.00,1.82,2.05,1.79,2.07,1.29,2.25,1.70,1.71,3.95,4.18,4.46,4.36,3.78,
                         3.71,4.29,4.27,3.44,4.71,4.08,4.33,4.47,3.76,3.76,3.29,4.45,4.00,3.95,3.28,3.77,3.30,2.73,3.52,3.33,2.78,3.21,
                         3.22,4.14,5.67,5.13,5.33,4.32,4.43,3.73,4.56,3.77,3.70,3.13,4.00,4.71,2.91,4.00,5.09,3.89,2.84,2.84,2.06,2.75,2.75,
                         3.50,2.83,3.50,2.50,4.05,3.05,2.50,3.90,4.80,2.80,3.00,5.47,3.28,3.78,2.67,3.75,3.92,3.62,4.45,4.59,3.33,4.00,
                         1.00,2.27,1.00,2.27,1.00,2.27,1.00,2.27,1.64,3.79,1.25,3.79,1.25,3.79,1.25,3.79,1.25,2.52,2.64,1.00,2.64,1.00,
                         2.64,1.00,2.64,1.00,1.82,1.72,1.84,1.77,1.94,1.59,2.02,2.09,1.79,1.84,2.44,3.09,2.77,2.84,2.76,2.73,2.70,2.76,2.76,
                         2.02,1.42,2.02,1.47,2.30,2.50,3.01,3.70,2.89,1.29,1.40,1.50,1.29,1.33,1.63,1.83,1.00,1.00,1.50,1.70,1.52,1.45,
                         1.53,1.48,1.81,1.50,1.27,1.84,1.57,1.57,1.62,2.00,1.47,1.62,1.32,1.63,1.14,1.31,1.29,1.25,1.40,1.26,1.26,1.50,1.52,
                         1.30,1.31,1.13,1.32,1.38,1.77,1.50,1.79,1.77,1.67,2.06,1.94,1.39,1.33,1.41,1.61,1.56,1.52,1.84,1.50,1.83,1.80,
                         1.32,1.38,1.77,1.79,1.77,1.67,2.06,1.94,1.39,1.33,1.41,1.61,1.56,1.52,3.50,2.40,1.50,1.00,1.00,2.80,2.03,3.05,3.20,
                         2.14,1.95,2.11,2.12,2.17,1.92,1.51,2.21,2.23,2.56,2.70,2.74,2.40,2.44,2.80,1.91,2.89,2.53,2.59,2.24,1.77,2.62,
                         2.41,2.26,1.87,2.60,2.30,2.94,2.70,2.16,2.89,2.60,3.40,2.78,3.51,2.64,2.19,3.10,3.08,2.78,3.47,2.73,2.89,2.89,2.89,
                         3.11,2.64,2.97,2.45,2.61,3.15,3.10,2.35,2.38,1.70,1.38,1.50,1.89,1.58,1.86,1.27,1.41,1.64,1.54,1.84,1.69,2.02,
                         1.33,1.69,1.93,1.86,1.53,2.03,1.83,1.54,1.71,2.32,1.96,2.06,1.98,1.98,2.19,2.28,2.16,2.56,1.97,1.90,2.37,2.11,2.19,
                         2.17,2.34,2.08,3.10,2.12,2.17,2.39,2.74,2.55,2.62,2.31,2.48,2.19,2.48,2.00,2.85,2.93,2.48)



data <- data.frame(water=water.time,temp=temperature, fungi=fungi, resp=fungi.l)
head(data)
##   water temp fungi resp
## 1     4   10    S1 1.69
## 2     4   10    S1 1.63
## 3     4   10    S1 1.38
## 4     4   10    S1 1.44
## 5     4   10    S1 1.70
## 6     4   10    S1 1.61
library(lattice)
library(gridExtra)

p1 <- xyplot(resp ~ water, groups=fungi, data=data, type=c("a","p"), auto.key=list(space="top", columns=2))

p2 <- xyplot(resp ~ temp, groups=fungi, data=data, type=c("smooth","p"), auto.key=list(space="top", columns=2))

grid.arrange(p1,p2, ncol=2)

Model selection

library(MASS)

model.f <- lm(resp ~ fungi*water*temp + fungi*I(temp^2), data=data)
anova(model.f)
## Analysis of Variance Table
## 
## Response: resp
##                   Df  Sum Sq Mean Sq  F value    Pr(>F)    
## fungi              1  38.305  38.305  79.1586 < 2.2e-16 ***
## water              1  14.882  14.882  30.7547 5.600e-08 ***
## temp               1  29.292  29.292  60.5323 7.377e-14 ***
## I(temp^2)          1  59.523  59.523 123.0054 < 2.2e-16 ***
## fungi:water        1   2.674   2.674   5.5265   0.01926 *  
## fungi:temp         1   0.015   0.015   0.0305   0.86145    
## water:temp         1   0.002   0.002   0.0041   0.94903    
## fungi:I(temp^2)    1  13.953  13.953  28.8334 1.401e-07 ***
## fungi:water:temp   1   0.097   0.097   0.2003   0.65474    
## Residuals        368 178.076   0.484                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
model.s <- stepAIC(model.f)
## Start:  AIC=-264.51
## resp ~ fungi * water * temp + fungi * I(temp^2)
## 
##                    Df Sum of Sq    RSS     AIC
## - fungi:water:temp  1    0.0969 178.17 -266.31
## <none>                          178.08 -264.51
## - fungi:I(temp^2)   1   13.9525 192.03 -238.00
## 
## Step:  AIC=-266.31
## resp ~ fungi + water + temp + I(temp^2) + fungi:water + fungi:temp + 
##     water:temp + fungi:I(temp^2)
## 
##                   Df Sum of Sq    RSS     AIC
## - water:temp       1    0.0020 178.18 -268.30
## <none>                         178.17 -266.31
## - fungi:water      1    2.6743 180.85 -262.68
## - fungi:temp       1   13.4417 191.62 -240.82
## - fungi:I(temp^2)  1   13.9525 192.13 -239.81
## 
## Step:  AIC=-268.3
## resp ~ fungi + water + temp + I(temp^2) + fungi:water + fungi:temp + 
##     fungi:I(temp^2)
## 
##                   Df Sum of Sq    RSS     AIC
## <none>                         178.18 -268.30
## - fungi:water      1    2.6743 180.85 -264.67
## - fungi:temp       1   13.4417 191.62 -242.81
## - fungi:I(temp^2)  1   13.9525 192.13 -241.81
anova(model.s)
## Analysis of Variance Table
## 
## Response: resp
##                  Df  Sum Sq Mean Sq  F value    Pr(>F)    
## fungi             1  38.305  38.305  79.5446 < 2.2e-16 ***
## water             1  14.882  14.882  30.9047 5.197e-08 ***
## temp              1  29.292  29.292  60.8275 6.412e-14 ***
## I(temp^2)         1  59.523  59.523 123.6053 < 2.2e-16 ***
## fungi:water       1   2.674   2.674   5.5535   0.01896 *  
## fungi:temp        1   0.015   0.015   0.0307   0.86111    
## fungi:I(temp^2)   1  13.953  13.953  28.9740 1.305e-07 ***
## Residuals       370 178.175   0.482                       
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
summary(model.s)
## 
## Call:
## lm(formula = resp ~ fungi + water + temp + I(temp^2) + fungi:water + 
##     fungi:temp + fungi:I(temp^2), data = data)
## 
## Residuals:
##      Min       1Q   Median       3Q      Max 
## -2.06998 -0.46676 -0.00033  0.42706  2.52498 
## 
## Coefficients:
##                     Estimate Std. Error t value Pr(>|t|)    
## (Intercept)       -3.0735480  0.4137920  -7.428 7.70e-13 ***
## fungiS2            2.5107835  0.5851902   4.291 2.28e-05 ***
## water              0.0865079  0.0154553   5.597 4.25e-08 ***
## temp               0.4743496  0.0382945  12.387  < 2e-16 ***
## I(temp^2)         -0.0098933  0.0008479 -11.668  < 2e-16 ***
## fungiS2:water     -0.0515079  0.0218571  -2.357    0.019 *  
## fungiS2:temp      -0.2861251  0.0541567  -5.283 2.17e-07 ***
## fungiS2:I(temp^2)  0.0064547  0.0011992   5.383 1.31e-07 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 0.6939 on 370 degrees of freedom
## Multiple R-squared:  0.471,  Adjusted R-squared:  0.461 
## F-statistic: 47.06 on 7 and 370 DF,  p-value: < 2.2e-16

The stepwise methodology using the AIC criteria for model selection presented the following models:

Fungi S1: \(E(y) = \beta_{0} + \beta_{1}X + \beta_{2}Z + \beta_{3}Z^{2}\)

Fungi S2: \(E(y) = \beta_{0} + \beta_{1}X + \beta_{2}Z + \beta_{3}Z^{2}\)

Equations

Fungi S1: $ -3.073 + 0.086X + 0.474Z - 0.009Z^{2}$

For fungi 2

\(\beta_{0}\) for S2 is \((Intercept) - fungiS2\) = \(-3.073 + 2.510 = -0.563\)

\(\beta_{1}\) for S2 is \(water - fungiS2:water\) = \(0.086-0.051=0.035\)

\(\beta_{2}\) for S2 is \(temp - fungiS2:temp\) = \(0.474-0.286=0.188\)

\(\beta_{3}\) for S2 is \(I(temp^2) - fungiS2:I(temp^2)\) = \(-0.009+0.006=-0.003\)

Fungi S2: \(-0.563 + 0.035X + 0.188Z - 0.003Z^{2}\)

Predictions

library(latticeExtra)


pred <- predict(model.s)


dat.graf <- data.frame(data, pred=pred)


wireframe(pred ~ water + temp | fungi, data=dat.graf, 
          drape=TRUE, #colorkey=FALSE,par.settings = standard.theme(color = FALSE),
          col='transparent',  
          scales = list(arrows = FALSE),
          screen = list(z = 30, x = -60),
          xlab=list("Water (horas)", rot=20, cex=0.7),
          ylab=list("Temperature (Celsius)", rot=-48, cex=0.7),
          zlab=list('Length (mm)', rot=95, cex=0.7),
          par.box = list(col=c(1,1,NA,NA,1,NA,1,1,1)))