Chapter 3 The F test for Comparing Reduced vs. Full Models

  • Assume GMMNE and suppose C(X0)C(X). We wish to test H0:E(y)C(X0) vs. HA:E(y)C(X)C(X0)

    • For the general case, consider the test statistics

    F=y(PXPX0)y/[rank(X)rank(X0)]y(IPX)y/[nrank(X)]Frank(X)rank(X0),nrank(X)(βX(PXPX0)Xβ2σ2)

    • Because (PXPX0σ2)(σ2I)=PXPX is idempotent and rank(PXPX0)=rank(PX)rank(PX0), y(PXPX0σ2)yχ2rank(X)rank(X0)(12βX(PXPX0σ2)Xβ)

    • y(IPXσ2)yχ2nrank(X)

    • y(PXPX0σ2)y is independent of y(IPXσ2)y because (PXPX0σ2)(σ2I)(IPXσ2)=0

    • If H0 is true, then (PXPX0)Xβ=0

    • βX(PXPX0)Xβ=

    • y'(P_X-P_{X_0})y = y'(I-P_{X_0})y - y'(I-P_X)y = SSE_{REDUCED} - SSE_{FULL}

    • Thus, F = \frac{(SSE_{REDUCED} - SSE_{FULL})/(DFE_{REDUCED} - DEF_{FULL})}{SSE_{FULL}/DFE_{FULL}}

    • Equivalence of F test: this reduced vs. full model F test is equivalent to the F test for testing H_0: C\beta = d vs. H_A: C\beta \neq d.