Chapter 3 The F test for Comparing Reduced vs. Full Models
Assume GMMNE and suppose C(X0)⊂C(X). We wish to test H0:E(y)∈C(X0) vs. HA:E(y)∈C(X)∖C(X0)
- For the general case, consider the test statistics
F=y′(PX−PX0)y/[rank(X)−rank(X0)]y′(I−PX)y/[n−rank(X)]∼Frank(X)−rank(X0),n−rank(X)(βX′(PX−PX0)Xβ2σ2)
Because (PX−PX0σ2)(σ2I)=PX−PX is idempotent and rank(PX−PX0)=rank(PX)−rank(PX0), y′(PX−PX0σ2)y∼χ2rank(X)−rank(X0)(12β′X′(PX−PX0σ2)Xβ)
y′(I−PXσ2)y∼χ2n−rank(X)
y′(PX−PX0σ2)y is independent of y′(I−PXσ2)y because (PX−PX0σ2)(σ2I)(I−PXσ2)=0
If H0 is true, then (PX−PX0)Xβ=0
β′X(PX−PX0)Xβ=‖
y'(P_X-P_{X_0})y = y'(I-P_{X_0})y - y'(I-P_X)y = SSE_{REDUCED} - SSE_{FULL}
Thus, F = \frac{(SSE_{REDUCED} - SSE_{FULL})/(DFE_{REDUCED} - DEF_{FULL})}{SSE_{FULL}/DFE_{FULL}}
Equivalence of F test: this reduced vs. full model F test is equivalent to the F test for testing H_0: C\beta = d vs. H_A: C\beta \neq d.