Chapter 12 The ANOVA Approach to the Analysis of Linear Mixed-Effects Models

Suppose yij=μ+τi+uij+eijk , i=1,,t;j=1,,n;k=1,,m . β=(μ,τ1,,τt), u=(u11,u12,,utn), e=(e111,e112,,etnm).

[ue]N(0,[σ2uI00σ2eI])

  • This is the standard model for a CRD with t treatments, n experimental units per treatment and m observations per experimental unit.
  • We can write this model as y=Xβ+Zu+e where X=[1tnm×1,It×t1nm×1] and Z=[Itn×tn1m×1].
  • Let X1=1tnm×1, X2=X and X3=Z. Note that C(X1)C(X2)C(X3). Let Pj=PXj for j=1,2,3.
  • Suppose w1,,wkind(μw,σ2w), then E{ki=1(wiˉw.)2}=(k1)σ2w.

  • Expected value of MStrt:

    E(MStrt)=nmt1ti=1E(ˉyi..ˉy.)2=nmt1ti=1E(μ+τi+ˉui.+ˉei..μˉτ.ˉu..ˉe..)2=nmt1ti=1E(τiˉτ.+ˉuiˉu..+ˉei..ˉe...)2=nmt1ti=1[(τiˉτ.)2+E(ˉui.ˉu..)2+E(ˉei..ˉei..)2]=nmt1[ti=1(τiˉτ.)2+E{ti=1(ˉui.ˉu..)2}+E{ti=1(ˉei..ˉe)2}]=nmt1ti=1(τiˉτ.)2+mσ2u+σ2e.

    where ${u}{1.}, , {u}{t.} N(0, u^2/n) $ and ${e}{1..}, , {e}_{t..} N(0, _e^2/(nm)) $ so that E{ti=1(ˉui.ˉu..)2}=(t1)σ2un and E{ti=1(ˉei..ˉe)2}=(t1)σ2enm

  • Furthermore, it can be shown that y(P2P1)yσ2e+mσ2uχ2t1(nm2(σ2e+mσ2u)ti=1(τiˉτ.)2)y(P3P2)yσ2e+mσ2uχ2tnty(IP3)yσ2eχ2tnmtn

  • We can use F1 to test H0:τ1==τt. and F2 to test H0:σ2u=0 F1=MStrtMSxu(trt)=y(P2P1)y/(t1)y(P3P2)y/(tnt)=[y(P2P1)yσ2e+mσ2u]/(t1)[y(P3P2)yσ2e+mσ2u]/(tnt)Ft1,tnt(nm2(σ2e+mσ2u)ti=1(τiˉτ.)2)

    F2=MSxu(trt)MSou(xu,trt)=y(P3P2)y/(tnt)y(IP3)y/(tnmtn)=(σ2e+mσ2uσ2e)[y(P3P2)yσ2e+mσ2u]/(tnt)[y(IP3)yσ2e]/(tnmtn)(σ2e+mσ2uσ2e)Ftnt,tnmtn.

  • (MSxu(trt)MSou(xu,trt))/m is an unbiased estimator of σ2u. However, it can take negative values.

  • In this case, Σ=σ2uItn×tn11m×m+σ2eItnm×tnm and ˆβΣ=(XΣ1X)1XΣ1y=(XX)Xy=ˆβ, i.e. the GLS estimator is equal to the OLS estimator for any estimable Cβ.

    • Cβ can be written as A[ˉy1..,,ˉyt..]. Var(ˉyi..)=Var(ˉui.)+Var(ˉei..)=1n(σ2u+σ2e/m) which implies the variance of the BLUE of Cβ is σ2AA/n where σ2=σ2u+σ2e/m.

    • We need to estimate σ2 which can equivalently be estimated by MSxu(trt)/m or by the MSE in an analysis of the experimental unit means.

    • For example, ^Var(ˉy1..ˉy2..)=2MSxu(trt)nm and a 100(1α)% confidence interval for τ1τ2 is ˉy1..ˉy2..±tt(n1),(1α)/22MSxu(trt)nm.

    • A test of H0:τ1=τ2 is based on

      t=ˉy1..ˉy2..2MSxu(trt)nmtt(n1)(τ1τ22(σ2e+mσ2u)nm).