Chapter 12 The ANOVA Approach to the Analysis of Linear Mixed-Effects Models
Suppose yij=μ+τi+uij+eijk , i=1,…,t;j=1,…,n;k=1,…,m . β=(μ,τ1,…,τt)′, u=(u11,u12,…,utn)′, e=(e111,e112,…,etnm)′.
[ue]∼N(0,[σ2uI00σ2eI])
- This is the standard model for a CRD with t treatments, n experimental units per treatment and m observations per experimental unit.
- We can write this model as y=Xβ+Zu+e where X=[1∗tnm×1,I∗t×t⊗1nm×1] and Z=[Itn×tn⊗1m×1].
- Let X1=1∗tnm×1, X2=X and X3=Z. Note that C(X1)⊂C(X2)⊂C(X3). Let Pj=P∗Xj for j=1,2,3.
![]() |
![]() |
![]() |
Suppose w1,…,wkind∼(μw,σ2w), then E{∑ki=1(wi−ˉw.)2}=(k−1)σ2w.
Expected value of MStrt:
E(MStrt)=nmt−1t∑i=1E(ˉyi..−ˉy….)2=nmt−1t∑i=1E(μ+τi+ˉui.+ˉei..−μ−ˉτ.−ˉu..−ˉe..)2=nmt−1t∑i=1E(τi−ˉτ.+ˉui−ˉu..+ˉei..−ˉe...)2=nmt−1t∑i=1[(τi−ˉτ.)2+E(ˉui.−ˉu..)2+E(ˉei..−ˉei..)2]=nmt−1[t∑i=1(τi−ˉτ.)2+E{t∑i=1(ˉui.−ˉu..)2}+E{t∑i=1(ˉei..−ˉe…)2}]=nmt−1t∑i=1(τi−ˉτ.)2+mσ2u+σ2e.
where ${u}{1.}, , {u}{t.} N(0, u^2/n) $ and ${e}{1..}, , {e}_{t..} N(0, _e^2/(nm)) $ so that E{∑ti=1(ˉui.−ˉu..)2}=(t−1)σ2un and E{∑ti=1(ˉei..−ˉe…)2}=(t−1)σ2enm
Furthermore, it can be shown that y′(P2−P1)yσ2e+mσ2u∼χ2t−1(nm2(σ2e+mσ2u)t∑i=1(τi−ˉτ.)2)y′(P3−P2)yσ2e+mσ2u∼χ2tn−ty′(I−P3)yσ2e∼χ2tnm−tn
We can use F1 to test H0:τ1=⋯=τt. and F2 to test H0:σ2u=0 F1=MStrtMSxu(trt)=y′(P2−P1)y/(t−1)y′(P3−P2)y/(tn−t)=[y′(P2−P1)yσ2e+mσ2u]/(t−1)[y′(P3−P2)yσ2e+mσ2u]/(tn−t)∼Ft−1,tn−t(nm2(σ2e+mσ2u)t∑i=1(τi−ˉτ.)2)
F2=MSxu(trt)MSou(xu,trt)=y′(P3−P2)y/(tn−t)y′(I−P3)y/(tnm−tn)=(σ2e+mσ2uσ2e)[y′(P3−P2)yσ2e+mσ2u]/(tn−t)[y′(I−P3)yσ2e]/(tnm−tn)∼(σ2e+mσ2uσ2e)Ftn−t,tnm−tn.
(MSxu(trt)−MSou(xu,trt))/m is an unbiased estimator of σ2u. However, it can take negative values.
In this case, Σ=σ2uItn×tn⊗11′∗m×m+σ2eI∗tnm×tnm and ˆβΣ=(X′Σ−1X)−1X′Σ−1y=(X′X)−X′y=ˆβ, i.e. the GLS estimator is equal to the OLS estimator for any estimable Cβ.
Cβ can be written as A[ˉy1..,…,ˉyt..]′. Var(ˉyi..)=Var(ˉui.)+Var(ˉei..)=1n(σ2u+σ2e/m) which implies the variance of the BLUE of Cβ is σ2AA′/n where σ2=σ2u+σ2e/m.
We need to estimate σ2 which can equivalently be estimated by MSxu(trt)/m or by the MSE in an analysis of the experimental unit means.
For example, ^Var(ˉy1..−ˉy2..)=2MSxu(trt)nm and a 100(1−α)% confidence interval for τ1−τ2 is ˉy1..−ˉy2..±tt(n−1),(1−α)/2√2MSxu(trt)nm.
A test of H0:τ1=τ2 is based on
t=ˉy1..−ˉy2..√2MSxu(trt)nm∼tt(n−1)(τ1−τ22(σ2e+mσ2u)nm).