Chapter 1 Preliminaries

  • Idempotent: A matrix A is idempotent if AA=A

    • The rank of an idempotent matrix is equal to its trace, i.e. rank(A)=trace(A)
  • Generalized Inverse: G is a generalized inverse of A if AGA=A

  • Quadratic form, positive definite, non-negative definite

    • A is PD A1 exists
  • linear transformation

  • multivariate normal distribution

    • if yN(μ,Σ), then yd=Az+μ where zN(0,In×n) and A is an m×n matrix of rank n such that AA=Σ

    • if yN(μ,In×n), then w=yyχ2n(μμ/2)

    • Suppose Σ is an n×n positive definite matrix, A is an n×n symmetric matrix of rank m such that AΣ is idempotent (AΣAΣ=AΣ). Then yN(μ,Σ)yAyχ2m(μAμ/2)

    • If wχ2m(θ) then E(w)=m+2θ and Var(w)=2m+8θ

  • Non-central t distribution: yN(δ,1), wχ2m, y and w are independent then yw/m has a non-central t distribution with m degrees of freedom and non-centrality parameter δ

  • Non-central F distribution: w1χ2m1(θ) and w2χ2m2. w1 and w2 are independent then w1/m1w2/m2 has a non-central F distribution with m1 numerator degrees of freedom, m2 denominator degrees of freedom and non-centrality parameter θ: w1/m1w2/m2Fm1,m2(θ).

    • if utm(δ), then u2F1,m(δ2/2).